• Title/Summary/Keyword: Climatological factor

Search Result 10, Processing Time 0.022 seconds

Observational Study on Local Climatological Environment of the Mountain Adjacent the Dongyeong Herb Garden in Chilgok (칠곡 동영 약초원 인근 산지의 국지 기후 환경 관측 연구)

  • Kim, Hak-Yun;Choi, Seo-Hwan;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.897-904
    • /
    • 2016
  • We investigated the local climatological characteristics of the mountain adjacent the Dongyeong herb garden in Chilgok. We established one set of automatic weather system (AWS) on a hill where development of herb garden is in progress. The observations were continued for 2 years(2013. 07-2015.06). In this study, we analyzed the observed data comparing the data of Gumi meteorological observatory (GMO). The results showed that the air temperature(relative humidity) of Dongyeong herb garden were lower(higher) than those of GMO. Especially the differences are more during warm climate season. It means that the gaps of thermal environment between two points are mainly caused by the evaporation effects of forest. In addition, we analyzed the warmth indices(warmth index and coldness index) with the observed air temperature. The warmth and coldness indices indicate about 107 and -12, respectively. The values correspond to warm temperature climate.

Classification of Agroclimatic Zones Considering the Topography Characteristics in South Korea (지형적 특성을 고려한 우리나라의 농업기후지대 구분)

  • Kim, Yongseok;Shim, Kyo-Moon;Jung, Myung-Pyo;Choi, In-Tae;Kang, Kee-Kyung
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.507-512
    • /
    • 2016
  • This study was conducted to classify agroclimatic zones in South Korea. To classify the agroclimatic zones, such climatic factors as amount of rainfall from April to May, amount of rainfall in October, monthly average air temperature in January, monthly average air temperature from April to May, monthly average air temperature from April to September, monthly average air temperature from December to March, monthly minimum air temperature in January, monthly minimum air temperature from April to May, Warmth Index were considered as major influencing factors on the crop growth. Climatic factors were computed from monthly air temperature and precipitation of climatological normal year (1981~2010) at 1 km grid cell estimated from a geospatial climate interpolation method. The agroclimatic zones using k-means cluster analysis method were classified into 6 zones.

Study on the Growth Environment of 'Gangwha-mugwort' Through the Climatological Characteristic Analysis of Gangwha Region (강화지역의 기후특성 분석을 통한 '강화약쑥'의 생육 환경 연구)

  • Ahn, Joong-Bae;Hur, Ji-Na;Jung, Hae-Gon;Park, Jong-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Eupatilin, one of representative medical components of mugwort, can be efficiently extracted from the 'Gangwha Sajabalssuk'. The Eupatilin content may depend on environmental factors such as soil and regional climate in addition to a genetic factor and Gangwha region has a profitable environmental condition for the mugwort growth. In this study, the climatological characteristics of Gangwha was analyzed in order to find the environmental condition of mugwort containing high Eupatilin in term of atmospheric, oceanographic and land variables. The climate of Gangwha is characterized by the relatively low daily temperature and large diurnal variation with plenty of solar radiation, long sunshine duration and less cloudiness. According to our correlation analysis, the long sunshine duration and the large diurnal temperature variation are highly correlated with the Eupatilin contents. The result implies that Gangwha has the favorable conditions for the cultivation and the habitat of the high-Eupatilin concentrated mugwort. Because of the sea surrounding Gangwha Island with low salinity and moderate wind, the salt contained in sea breeze is relatively low compared to other regions. Furthermore, Gangwha has clean atmospheric environment compared to other regions because the concentrations of toxic gases harmful to crop growth such as nitrogen dioxide ($NO_2$), sulfite gas ($SO_2$) and fine dust (PM-10) are lower in the air. The ozone ($O_3$) concentration is moderate and within the level of natural production. It is also found that moderately coarse texture or fine loamy soils known as good for water drainage and for the growth and cultivation of the 'Gangwha-mugwort' are distributed throughout the areas around mountainous districts in Gangwha, coinciding with those of mugwort habitat.

A Determination of the Maximum Potential Runoff of Small Rural Basins (소하천(小河川) 유역(流域)의 잠재유출량(潛在流出量) 결정(決定))

  • Yoon, Yong Nam;Hong, Chang Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 1982
  • An effort of preliminary type has been made to develope a practical method for the waterway area determination of a drainage outlet in rural or agricultural areas. The Seoul meteorological station was selected as tile index station, and the maximum rainfalls-duration-frequency (R-D-F) relation of short-time intense rainfalls was first established. A frequency analysis of the daily rainfalls for the 75 stations selected throughout the country resulted the 50-year daily rainfall for each station. The rainfall factor, which is defined here as the ration of 50-year daily rainfalls of individual station and the index station, was determined for the 8 climatological regions divided in this study. Following the US SCS method the runoff number of a watershed was given based on the soil type, land-use pattern, and the surface treatment. With this runoff number and the R-D-F relationship the runoff factors for the index station were computed and hence a nomogram could be drawn which makes it possible to determine the runoff factor for a given rainfall number and a rainfall of specific duration and frequency. With this done, the potential runoff of a watershed for a given rainfall duration could be calculated, based on the unit hydrograph theory, by multiplying the rainfall factor, the runoff factor, and the drainage area of the watershed under consideration. Then, the maximum runoff potential was determined by varying the rainfall duration and finding out the duration which results the peak discharge of a gived return period.

  • PDF

Comparisons of the Pan and Penman Evaporation Trends in South Korea (우리나라 증발접시 증발량과 Penman 증발량 추세 비교분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.445-458
    • /
    • 2010
  • The effects of geographical and climatic factors on annual and monthly pan and Penman evaporation were analyzed. 52 climatological stations were selected and trend analyses were performed. Furthermore, cluster analysis and multiple linear regression analysis were performed to understand the effects of geographical and climatic factors on pan and Penman evaporation. Based on stepwise multiple linear regression analysis, annual pan evaporation is proved to be mainly controlled by urbanization as geographical factor, and annual pan evaporation is also controlled by temperature, relative humidity, wind speed, and solar radiation as climatic factor. Especially wind speed is considered to be most significant climatic factor which affects pan evaporation. Meanwhile, Penman evaporation is not affected by geographical factors but it is affected by climate factors such as temperature, relative humidity, wind speed, and solar radiation except precipitation. Furthermore, the study results show that only proximity to coast affects pan evaporation trend on July; however, geographical and climatic factors do not affect pan evaporation trends in annual basis and monthly basis (January, April, and October). On the other hand, Penman evaporation trends were not affected by geographical factors in annual and monthly basises.

On the Flowering Dates of the Woody Plant Species in the Hongneung Arboretum, Seoul (홍릉수목원수종의 개화기에 관하여)

  • Yang-Jai Yim;Muyon Cho
    • The Korean Journal of Ecology
    • /
    • v.1 no.1
    • /
    • pp.17-23
    • /
    • 1977
  • Flowering dates of 389 plant species in the Hongneung Arboretum, Seoul, had been recorded from 1968 through 1975. The thermal analysis on the air temperature as the key factor determining the first flowering date, with climatological data obtained in the Arboretum, were undertaken by Nuttonson's Index (1948) and Lindsey & Newman's Index (1956). The results and conclusion in this study are as follow; Peak in the bell shape distribution curve of the species and first flowering dates, largely, was early May. Flower spans of most species were 10 to 20 days, neverthless, some species flower only a few days while others may stay flowering a hundred days even more. Increase-curves of summation temperature from early spring through late-summer showed almost the same mode in both Nuttonson;s Index (Tn) and Lindsey & Newman's Index (T1). These Indices manifested the exponential curve, increasing slowly at the beginning of spring chiefly but rapidly from the middle part of April. The equation of the linear relationahip between Tn and Tl as far as in thisstudy is as follow. Tl=230Tn It appears that the distribution of summation temperature, below Tn=400°C·day, affects the first flowering, even though it could be modified somehow by the distribution of precipitation, day length and others. Nuttonson's Index (Tn.f) and Lindsey & Newman's Index (Tl.f) upon the thermal amount first flowering dates have been respectively simulated as follow. Tn.f=θa + C Tl.f=230θa + 230C where θ is air temperature 10°C, a and C are a constant.

  • PDF

Characteristics of the Polar Ionosphere Based on the Chatanika and Sondrestrom Incoherent Scatter Radars

  • Kwak, Young-Sil;Ahn, Byung-Ho
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.489-499
    • /
    • 2004
  • The climatological characteristics of the polar ionospheric currents obtained from the simultaneous observations of the ionospheric electric field and conductivity are examined. For this purpose, 43 and 109 days of measurements from the Chatanika and Sondrestrom incoherent scatter radars are utilized respectively. The ionospheric current density is compared with the corresponding ground magnetic disturbance. Several interesting characteristics about the polar ionosphere are apparent from this study: (1) The sun determines largely the conductance over the Sondrestrom radar, while the nighttime conductance distribution over the Chatanika radar is significantly affected by auroral precipitation. (2) The regions of the maximum N-S electric field over the Chatanika radar are located approximately at the dawn and dusk sectors, while they tend to shift towards dayside over the Sondrestrom radar. The N-S component over Son-drestrom is slightly stronger than Chatanika. However, the E-W component over Chatanika is negligible compared to that of Sondrestrom. (3) The E-W ionospheric current flows dominantly in the night hemisphere over Chatanika, while it flows in the sunlit hemisphere over Sondrestrom. The N-S current over Chatanika flows prominently in the dawn and dusk sectors, while a strong southward current flows in the prenoon sector over Sondrestrom. (4) The assumption of infinite sheet current approximation is far from realistic, underestimating the current density by a factor of 2 or more. It is particularly serious for the higher latitude region. (5) The correlation between ${\Delta}H\;and\;J_E$ is higher than the one between ${\Delta}D\;and\;J_N$, indicating that field-aligned current affects ${\Delta}D$significantly.

Seasonal Variations of the Evaporation in Korea (증발량의 시공적 변화)

  • 이광호;김문일
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.243-251
    • /
    • 1985
  • The distributions of the copper plated(small) pan evaporation in both space and time are analysed with the data observed, and the lake and the potential evaportranspiration are estimated from the climatological data. These value are compared with each other and to the precipitation for deducing the seasonal amounts and variations of water budgets in the selected basins and regions. The meteorological factor which is closely associated with the small pan evaporation are hardly recognizable when they are used as the monthly values. The relationships among the small pan, the Class A pan and the lake evaporation are well correlated with each other with correlation coefficient of above 0.90, so it may be possible to derve other evaporations from knowing one evaporation. The ratio of the Class A pan and the lake evaporation to the small pan evaportion in annual are about 73% and 55%, repectively, except the mountaineous area where the values are about 10% less than those. The evapotranspiration reach about 40∼60% of the annumal precipitation, but in May and October two values are nearly same. The frequencies of the monthly evaportion in class intervals in the regions are also provided.

  • PDF

Assessing Vulnerability to Agricultural Drought of Pumping Stations for Preparing Climate Change (기후변화 대응을 위한 양수장의 농업가뭄 취약성 실태 평가)

  • Jang, Min-Won;Kim, Soo-Jin;Bae, Seung-Jong;Yoo, Seunghwan;Jung, Kyunghun;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.31-40
    • /
    • 2019
  • In order to implement practical alternatives to proactively cope with the agricultural drought, the potential vulnerability of irrigation pumping stations to agricultural drought was quantitatively evaluated. Data for the 124 pumping stations which are correlatable to the three proxy variables, i.e. exposure, sensitivity, and adaptive capacity was collected by the Korea Rural Community Corporation, and then standardized considering distribution of each data set. Finally, the vulnerability index was calculated by multiplying the weights determined by the expert survey. The results showed that the vulnerability index ranged from 0.709 to 0.331 and the most vulnerable pumping stations such as Judam, Wongoo and Jinahn were mostly located in Gyeongbuk province likely because of the climatological characteristics with high temperature and low rainfall around this area. In addition, it was found that the adaptive capacity was a dominant factor comparing to exposure or sensitivity proxy variables in contributing to the vulnerability. It is therefore recommended that more practical alternatives should be employed to effectively reduce the vulnerability of an individual pumping station to agricultural drought. Furthermore, the corresponding data related to adaptive capacity should be systematically organized and managed at a field level to design reliable adaptation strategies.

Properties of Solar Radiation Components Reflected by the Sea Surface: - A Case of Jeju Island, South Korea - (해수면에 의해 반사된 태양복사 성분의 특성: 남한의 제주도 사례)

  • Fumichika, Uno;Hayashi, Yousay;Hwang, Soo-Jin;Kim, Hae-Dong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.48-55
    • /
    • 2011
  • Solar radiation components reflected by the sea surface ($R_{ss}\uparrow$) are additional energy sources comprising the solar radiation regime. Previous studies, based on observational approaches, indicated that $R_{ss}\uparrow$ is an available climatological resource. However, an estimation process for $R_{ss}\uparrow$ has not been established. In this case study over Jeju Island in South Korea, we applied a new estimation process to solar radiation modeling and discussed the spatial distribution of $R_{ss}\uparrow$ and its seasonal variation. Our results showed that the illuminated area and the intensity of $R_{ss}\uparrow$ became greatest at the winter solstice and least at the summer solstice. We estimated the illuminated area of $R_{ss}\uparrow$ as it expanded over the southern slope of Jeju Island. At the winter solstice, on a daily basis, the area and intensity of illumination by $R_{ss}\uparrow$ were $182.3km^2$ and $0.41\;MJ\;m^{-2}\;day\;{-1}$, respectively. Comparing the daily accumulative and instantaneous values of $R_{ss}\uparrow$ intensity, the difference was about 20 times greater in daily cases than in instantaneous cases. On the other hand, for instantaneous values, the $R_{ss}\uparrow$ intensity accounted for up to 33% of the three components, i.e., direct, diffuse and reflected radiation in winter solstice. In addition, it was estimated that the sea surface reflectance depended on the wind speed. Therefore, in a practical use of this revised model, wind conditions should be considered as a critical factor in estimating $R_{ss}\uparrow$.