• Title/Summary/Keyword: Climatic suitability

Search Result 31, Processing Time 0.024 seconds

The First Finding of the Lichen Solorina saccata at an Algific Talus Slope in Korea

  • Park, Jung Shin;Kim, Dong-Kap;Kim, Chang Sun;Oh, Seunghwan;Kim, Kwang-Hyung;Oh, Soon-Ok
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.276-287
    • /
    • 2020
  • An algific talus slope is composed of broken rocks with vents connected to an ice cave, releasing cool air in summer and relatively warmer air in winter to maintain a more stable microclimate all year round. Such geological features create a very unusual and delicate ecosystem. Although there are around 25 major algific talus slopes in Korea, lichen ecology of these areas had not been investigated to date. In this study, we report the first exploration of lichen diversity and ecology at an algific talus slope, Jangyeol-ri, in Korea. A total of 37 specimens were collected over 2017-2018. Morphological and sequencing analysis revealed 27 species belonging to 18 genera present in the area. Of particular interest among these species was Solorina saccata, as it has previously not been reported in Korea and most members of genus Solorina are known to inhabit alpine regions of the Northern Hemisphere. We provide here a taxonomic key for S. saccata alongside molecular phylogenetic analyses and prediction of potential habitats in South Korea. Furthermore, regions in South Korea potentially suitable for Solorina spp. were predicted based on climatic features of known habitats around the globe. Our results showed that the suitable areas are mostly at high altitudes in mountainous areas where the annual temperature range does not exceed 26.6 ℃. Further survey of other environmental conditions determining the suitability of Solorina spp. should lead to a more precise prediction of suitable habitats and trace the origin of Solorina spp. in Korea.

Design and Utilization of climagraph for Analysis of Regional Suitability of Greenhouse Cropping in Korea (국내 온실재배의 적지성 분석을 위한 Climagraph의 작성과 이용)

  • 이현우;이석건;이종원
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.107-114
    • /
    • 2000
  • We constructed climagraphs for 16 regions of Korea by using the average monthly minimum air temperature, maximum air temperature and global radiation. We characterized the outside climate requirements corresponding to the climate requirements of crops in greenhouses. The climagraphs allow to decide the appropriate climate periods for greenhouse cultivation without heating and cooling equipment. These graphs may be used for analyzing climatic characteristic of a given area, selecting the suitable region and greenhouse and making a rational plan for greenhouse cropping in Korea. We found difficulty in deciding the beginning and end of greenhouse heating and cooling period due to insufficient references.

  • PDF

Predicting the potential distribution of the subalpine broad-leaved tree species, Betula ermanii Cham. under climate change in South Korea

  • Shin, Sookyung;Dang, Ji-Hee;Kim, Jung-Hyun;Han, Jeong Eun
    • Journal of Species Research
    • /
    • v.10 no.3
    • /
    • pp.246-254
    • /
    • 2021
  • Subalpine and alpine ecosystems are especially vulnerable to temperature increases. Betula ermanii Cham. (Betulaceae) is a dominant broad-leaved tree species in the subalpine zone and is designated as a 'Climate-sensitive Biological Indicator Species' in South Korea. This study aimed to predict the potential distribution of B. ermanii under current and future climate conditions in South Korea using the MaxEnt model. The species distribution models showed an excellent fit (AUC=0.99). Among the climatic variables, the most critical factors shaping B. ermanii distribution were identified as the maximum temperature of warmest month (Bio5; 64.8%) and annual mean temperature (Bio1; 20.3%). Current potential habitats were predicted in the Baekdudaegan mountain range and Mt. Hallasan, and the area of suitable habitat was 1531.52 km2, covering 1.57% of the Korean Peninsula. With global warming, future climate scenarios have predicted a decrease in the suitable habitats for B. ermanii. Under RCP8.5-2070s, in particular, habitat with high potential was predicted only in several small areas in Gangwon-do, and the total area suitable for the species decreased by up to 97.3% compared to the current range. We conclude that the dominant factor affecting the distribution of B. ermanii is temperature and that future temperature rises will increase the vulnerability of this species.

Potential risky exotic fish species, their ecological impacts and potential reasons for invasion in Korean aquatic ecosystems

  • Atique, Usman;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.41-53
    • /
    • 2022
  • Background: Due to the rapidly changing climatic conditions, South Korea faces the grand challenge of exotic species. With the increasing human movement, the influx of alien species to novel regions is prevalent across the globe. The latest research suggests that it is easy to prevent the introduction and establishment of alien species rather than controlling their spread and eradication. Like other countries, the Korean Ministry of Environment released a list (in 2018) of 45 potential risky exotic fish species considered likely to be invasive candidate fish species if they ever succeed in entering the Korean aquatic ecosystems. Results: The investigation into the invasion suitability traits showed that potential risky fish species could utilize those features in becoming invasive once they arrive in the Korean aquatic ecosystems. If the novel species establish viable populations, they are likely to incur higher economic costs, damage the native aquatic fauna and flora, and jeopardize the already perilled species. Furthermore, they can damage the installed infrastructure, decline overall abundance and biodiversity, and disturb the ecosystem services. Here we reviewed the list of fish species concerning their family, native origin, preferred aquatic biomes, main food items, current status in Korea, and potential threats to humans and the ecosystems. Data shows that most species are either already designated as invasive in the neighboring counties, including Japan, Vietnam, Thailand, and China, or originate from these countries. Such species have a higher climate match with the Korean territories. Conclusions: Therefore, it is exceptionally essential to study their most critical features and take regulatory measures to restrict their entry. The incoming fish species must be screened before letting them in the country in the future. The regulatory authorities must highlight the threatening traits of such species and strictly monitor their entrance. Detailed research is required to explore the other species, especially targeting the neighboring countries fish biodiversity, having demonstrated invasive features and matching the Korean climate.

Analysis of Relationship between Meteorological Factors and Suitable Cultivation Areas of Korean Rye Cultivar (국내 육성 호밀품종의 재배적지와 기상요인과의 관계 분석)

  • Jung-Gi Rye;Ik-Hwan Jo;Jin-Jin Kim;Ouk-Kyu Han
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.75-87
    • /
    • 2023
  • This research was conducted to analyze the cultivation performance and meteorological data of winter rye in Suwon, Gyeonggi Province, and Daegu for 11 years. The objective was to compare the growth and yield of domestically cultivated Korean rye cultivar "Gogu" and identify the factors influencing them, to determine suitable cultivation areas for Korean rye cultivar in the country. The results of the study showed that both Daegu and Suwon regions possess favorable climatic conditions for winter rye cultivation, with Suwon exhibiting a superior moisture supply compared to Daegu. Furthermore, the analysis of climate suitability revealed that rainfall days and precipitation were significant factors affecting rye cultivation. Through correlation and principal component analysis, the research evaluated the interrelationship between climate, cultivation factors, and winter rye crop performance, as well as identified variations among winter rye cultivation regions. This study provides valuable insights and information for winter rye cultivation in the country, thereby assisting in the decision-making process for selecting optimal cultivation areas.

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Mapping Species-Specific Optimal Plantation Sites Based on Environmental Variables in Namwon City, Korea (환경요인을 이용한 남원시의 적지적수도 제작)

  • Moon, Ga Hyun;Kim, Yong Suk;Lim, Joo Hoon;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • This study was conducted to develop a large scale map of species-specific plantation sites based on selected environmental variables such as topography, soil, and climatic factors in Namwon city. Site index equations by tree species were first regressed to 27 environmental variables that could influence the productivity of forest sites using digital forest site maps, digital climate maps, and the 5th National Forest Inventory data. Site index equations by tree species were all evaluated to estimate site productivity using 4-5 environmental variables, and the models' reliability was confirmed based on evaluation statistics. The determination coefficients of site index equations by species ranged from 0.42 to 0.76. With the site index equations, the site conditions appropriate for productive sites by species were considered to assess spatial distribution of productive areas for each species. The final map for optimal plantation in Namwon city was produced based on both site index equations and site conditions appropriate for productive sites by each species using GIS technique. Field survey was conducted to evaluate the suitability of selected species on the map of species-specific plantation sites. Results showed that the plantation map provides relatively reasonable spatial distribution of productive areas for selected species. It was revealed, however, that the sites evaluated as 'not suitable' for any tree species should be revised and complemented with additional information, especially with the site conditions appropriate for productive sites by species of interest. The outcomes of this study are expected to provide information for making customized species-specific plantation maps.

Quantification of Environmental Characteristics on Citrus Production Area of Jeju Island in Korea (제주도 감귤 재배지역에 대한 환경특성의 정량화)

  • Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Oh, SoonJa;Park, Kyo Sun;Hyun, Hae-Nam
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • To analyze quantitatively environmental characteristics of cultivation area of citrus, Satsuma mandarin (Citrus unshiu Marc.), we made digital maps of environmental elements such as topography and climate. Elevation, degree of slope, and slope aspect were selected as elements of topological environment, and the annual mean air temperature, annual total precipitation, mean air temperature on January, extreme value of daily minimum air temperature, and the number of days below $-5^{\circ}C$ were selected as elements of climatic environments. The grid values of 8 environmental elements were extracted by shape of citrus farm area and analyzed distribution patterns. We can determine 3 agroclimatic criteria for growing Satsuma mandarin as over $14.5^{\circ}C$ of annual mean air temperature, over $-10.0^{\circ}C$ of extreme value of daily minimum air temperature, and less 5 days of below $-5^{\circ}C$ of daily minimum air temperature.

Development of Climate Change Education Program in High School Based on CLAMP Inquiry of Fossil Leaves (잎화석의 CLAMP 탐구를 통한 고등학교 기후변화 교육 프로그램 개발)

  • Yoon, Mabyong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.1
    • /
    • pp.27-39
    • /
    • 2019
  • The purpose of this study is to develop a STEAM program for teaching climate change through CLAMP (Climate-Leaf Analysis Multivariate Program) paleoclimate inquiry in connection with high school 'Integrated Science' subject. In order to do so, we analyzed the 2015 revised national curriculum and science textbook in terms of the PDIE instructional design model, and developed the teaching-learning materials for 10 class hours through expert panel discussion and pilot test. According to the STEAM class procedure, in the situation presentation stage, the fossil leaves were collected from the dicotyledon plants near school, and the LMA (Leaf Margin Analysis) climate inquiry activity. was presented as the learning goal. During the creative design stage, students were taught about geology and leaf fossils in the study region, and CLAMP input data (31 characteristics of morphotype and leaf architectural of fossil leaves) were given. In the emotional experience and new challenge stage, we collected leaf fossils for outdoor learning, explored paleoclimate with CLAMP method, and promoted climatic literacy in the process of discussing tendencies and causes of Cenozoic's climate change. The validity of the development program was assessed (CVI .84) as being suitable for development purpose in all items through the process of establishing reliability among expert panel. In order to apply the program to the high school, a pilot test was conducted to supplement the discrepancies and to review the suitability. The satisfaction rate of the participants was 4.48, and the program was complemented with their opinions. This study will enable high school students to have practical knowledge and reacting volition for climate change, and contribute to fostering students' climate literacy.

Dynamics of $NO_3^{-}$-N in Barley Rhizosphere and Optimum Rate of Nitrogen Top- Dressing Based on $N_{min}$ Soil Test (실초태 실소 의 보리 근권토양내 동적 변화와 $N_{min}$ 토양진단법에 의한 과정 실소추식량 결정)

  • 손상목;큐케마틴;한인아
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.185-194
    • /
    • 1995
  • The prevention of excessive use of nitrogen fertilizer get an attention in Korea not only for minimizing $NO_3^-$ contamination of groundwater but also for establishment of environmental friendly sustainable agriculture. In order to find out the dynamics of $NO_3^-$ in barley rhizosphere and its suitability for nitrogen fertilization strategies and for environmental control, the accumulation of $NO_3^-$ in 3 layer, 0~30cm, 30~60cm, 60~90cm of soil profile has been detected in winter barley pro-duction system. It showed the recommended N fertilization rate for winter barley cause the $NO_3^-$ contamination of groundwater through $NO_3^-$ leaching during winter. The $NO_3^-$ content of 0~90cm soil depth have directly reflected the amount of basal N fertilization in the early spring, but not 0~30cm and 0~60cm soil depth. The contents of $NO_3^-$ measured to 0~30cm, 0~60cm soil depth were not significanly correlated with yield but the contents of $NO_3^-$ measured to 90cm soil depth was highly correlated with yield. Nitrogen fertilizer requirement could be estimated accurately by soil test and it provides field specific N rate recommendation for spring N application to winter barley. It was concluded that $N_{min}$ method could be applied to korean climatic and soil condition for optimal fertilizer application rate.

  • PDF