Browse > Article
http://dx.doi.org/10.1080/12298093.2020.1785729

The First Finding of the Lichen Solorina saccata at an Algific Talus Slope in Korea  

Park, Jung Shin (Korea National Arboretum)
Kim, Dong-Kap (Korea National Arboretum)
Kim, Chang Sun (Korea National Arboretum)
Oh, Seunghwan (Korea National Arboretum)
Kim, Kwang-Hyung (APEC Climate Center)
Oh, Soon-Ok (Korea National Arboretum)
Publication Information
Mycobiology / v.48, no.4, 2020 , pp. 276-287 More about this Journal
Abstract
An algific talus slope is composed of broken rocks with vents connected to an ice cave, releasing cool air in summer and relatively warmer air in winter to maintain a more stable microclimate all year round. Such geological features create a very unusual and delicate ecosystem. Although there are around 25 major algific talus slopes in Korea, lichen ecology of these areas had not been investigated to date. In this study, we report the first exploration of lichen diversity and ecology at an algific talus slope, Jangyeol-ri, in Korea. A total of 37 specimens were collected over 2017-2018. Morphological and sequencing analysis revealed 27 species belonging to 18 genera present in the area. Of particular interest among these species was Solorina saccata, as it has previously not been reported in Korea and most members of genus Solorina are known to inhabit alpine regions of the Northern Hemisphere. We provide here a taxonomic key for S. saccata alongside molecular phylogenetic analyses and prediction of potential habitats in South Korea. Furthermore, regions in South Korea potentially suitable for Solorina spp. were predicted based on climatic features of known habitats around the globe. Our results showed that the suitable areas are mostly at high altitudes in mountainous areas where the annual temperature range does not exceed 26.6 ℃. Further survey of other environmental conditions determining the suitability of Solorina spp. should lead to a more precise prediction of suitable habitats and trace the origin of Solorina spp. in Korea.
Keywords
Algific talus slope; phylogenic analysis; Solorina saccata; taxonomy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kong W-S, Lee S, Yoon K, et al. Environmental characteristics of wind-hole and phytogeographical values. J Environ Impact Assess. 2011;20(3):381-395.   DOI
2 Oh SH, Lee Y-M, Kong W-S. Air hole in Korea. Pochen (Korea): Geobook, KNA; 2013.
3 Morard S, Delaloye R, Lambiel C. Pluriannual thermal behavior of low elevation cold talus slopes in western Switzerland. Geogr Helv. 2010;65(2):124-134.   DOI
4 Zacharda M, Gude M, Kraus S, et al. The relict mite Rhagidia gelida (Acari, Rhagidiidae) as a biological cryoindicator of periglacial microclimate in European highland screes. Arct Antarct Alp Res. 2005;37(3):402-408.   DOI
5 Henry C. Refuge for an ice age survivor. Endanger Species Bull. 2003;28:24-26.
6 Iokawa Y, Ishizawa S. Vascular plants of windhole areas in Japan. J Phytogeogr Taxon. 2003;51:13-26.
7 Lendemer JC, Edenborn HM, Harris RC. Contributions to the lichen flora of Pennsylvania: notes on the lichens of a remarkable talus slope in Huntingdon county. Opusc Philolichenum. 2009;6:125-136.
8 Nekola JS. Paleorefugia and neorefugia: the influence of colonization history on community pattern and precess. Ecology. 1999;80(8):2459-2473   DOI
9 Saar R. Eishohlen ein meteorologisch-geophysikalisches Phanomen. Geogr Ann A. 1956;38(1):1-63.   DOI
10 Swarzlow CR. Ice caves in northern California. J Geol. 1935;43:440-442.   DOI
11 Vincent WB. Environmental influence of the glacieres of the Pryor Mountains, Montana. J Caves Karst Stud. 1974;36:13-21.
12 Kim J-S, Chung J-M, Kim J-H, et al. Floristic study and conservation management strategies of algific talus slopes on the Korean peninsula. Korean J Pl Taxon. 2016;46(2):213-246.   DOI
13 Maki T. Characteristics of topograph, climate and vegetation around Jagaramogara wind cave basin. J Agric Meteorol. 1998;54(3):255-266.   DOI
14 Sasaki H. Air and soil temperature affecting the distribution of plants on a wind-hole site. Ecol Rev. 1986;21:21-27.
15 Sato K, Kudo G, Uemura S. Cool-spots site vegetation in IZARIIRI-HEIDE, northern Japan. Jpn J Ecol. 1993;43:91-98.
16 Tanaka HL, Yokoi M, Nohara D. Observation study of summertime ice at the Nakayama windhole in Shimogo, Fukushima (Japan): UT; 2000.
17 White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
18 Zoller S, Scheidegger C, Sperisen S. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist. 1999;31(5):511-516.   DOI
19 Gargas A, Taylor JW. Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia. 1992;84(4):589-592.   DOI
20 Miadlikowska J, Lutzoni F. Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int J Plant Sci. 2000;161(6):925-958.   DOI
21 Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol. 1999;16(12):1799-1808.   DOI
22 Miadlikowska J, Kauff F, Hognabba F, et al. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol. 2014;79:132-168.   DOI
23 Martinez I, Burgaz AR. Revision of the genus Solorina (Lichenes) in Europe based on spore size variation. Ann Bot Fennici. 1998;35:137-142.
24 Thompson KM. Lichen diversity and conservation of northeast Iowa: White Pine Hollow State preserve and the lichen Lobaria pulmonaria. Ames, Iowa: ISU; 2018.
25 Smith RI, Ovstedal DO. Solorina spongiosa in Antarctica: an extremely disjunct bipolar lichen. Lichenologist. 1994;26(2):209-213.   DOI
26 Smith CW, Aptroot A, Coppins BJ, et al. The lichens of Great Britain and Ireland. 2nd ed. London (UK): BLS, NHM; 2009. p. 844-846.
27 Wiklund E, Wedin M. The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae. Cladistics. 2003;19(5):419-431.   DOI
28 Magain N, Miadlikowska J, Goffinet B, et al. Macroevolution of specificity in cyanolichens of the genus Peltigera section Polydactylon (Lecanoromycetes, Ascomycota). Syst Biol. 2016;66(1):74-99.
29 Miadlikowska J, Kauff F, Hofstetter V, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia. 2006;98(6):1088-1103.   DOI
30 Schmull M, Miadlikowska J, Pelzer M, et al. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia. 2011;103(5):983-1003.   DOI
31 Miadlikowska J, Lutzoni F. Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot. 2004;91(3):449-464.   DOI
32 Ohmura Y, Kashiwadani H. Checklist of lichens and allied fungi of Japan. Tokyo (Japan): NMNS; 2018. p. 110.
33 Zarrit R, Boumaza MS, Kerrour S, et al. L'Effet du Rapport de Forme sur la Convection Naturelle dans une Cavite Rectangulaire Inclinee Remplie d'Air. The 3rd International Seminar on New and Renewable Energies; Ghardaia - Algerie; 2014. p. 1-7.
34 Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-4680.   DOI
35 Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540-552.   DOI
36 Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755.   DOI
37 Wedin M, Tehler A, Gargas A. Phylogenetic relationships of Sphaerophoraceae (Ascomycetes) inferred from SSU rDNA sequences. Pl Syst Evol. 1998;209(1-2):75-83.   DOI
38 Wedin M, Wiklund E, Jorgensen PM, et al. Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Mol Phylogenet Evol. 2009;53(3):862-871.   DOI
39 Rambaut A. FigTree: tree figure drawing tool, v.1.4.0. Institute of Evolutionary Biology, University of Edinburgh; 2012. Available from: http://tree.bio.ed.ac.uk/software/figtree/
40 Kim MK, Han MS, Jang DH, et al. Production technique of observation grid data of 1km resolution. J Clim Res. 2012;7:55-68.
41 Sinigla M, Lokos L, Molnar K, et al. Distribution of the legally protected lichen species Solorina saccata in Hungary. Studia Bot Hung. 2018;49(1):47-70.   DOI
42 Thomson NF, Thomson JW. Spore ornamentation in the lichen genus Solorina. Bryologist. 1984;87(2):151-153.   DOI
43 Wetmore CM. Keys to the Lichens of China. UMN of Digital Conservancy; 2003. Available from: http://hdl.handle.net/11299/164294
44 Yoshimura I. Lichen flora of Japan in color. Osaka (Japan): Hoikusha Publisher; 1974.
45 Ellis CJ, Coppins BJ, Dawson TP, et al. Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv. 2007;140(3-4):217-235.   DOI
46 Ellis CJ, Geddes H, McCheyne N, et al. Lichen epiphyte response to non-analogue monthly climates: a critique of bioclimatic models. Perspect Plant Ecol. 2017;25:45-58.   DOI
47 Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572-1574.   DOI
48 Krog H, Swinscow T. Solorina simensis and S. saccata. Lichenologist. 1986;18(1):57-62.   DOI
49 Jahns HM, Klockner P, Ott S. Development of thalli and ascocarps in Solorina spongiosa (Sm.) Anzi and Solorina saccata (L.) Ach. Bibl Lichenol. 1995;57:241-251.
50 Gartner G, Dablander A, Kofler W. Zur Taxonomie von Solorina bispora NYL. ssp. bispora (Ascolichenes) nach Sporenmerkmalen. Ber Naturwiss-med Ver Innsb. 2011;97:27-33.
51 Martin L, Randlane T, Martin J. Lichens and their substrate preferences on the Pakri Peninsula (Northwest Estonia). Folia Cryptog Estonica. 2011;48:45-58.
52 Ellis CJ. A risk-based model of climate change threat: hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany. 2013;91(1):1-11.   DOI