• 제목/요약/키워드: Climate-smart agriculture

검색결과 79건 처리시간 0.02초

데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측 (Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House)

  • 최락영;채영현;이세연;박진선;홍세운
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

딥러닝 기법을 이용한 농업용저수지 CCTV 영상 기반의 수위계측 방법 개발 (Development of Methodology for Measuring Water Level in Agricultural Water Reservoir through Deep Learning anlaysis of CCTV Images)

  • 주동혁;이상현;최규훈;유승환;나라;김하영;오창조;윤광식
    • 한국농공학회논문집
    • /
    • 제65권1호
    • /
    • pp.15-26
    • /
    • 2023
  • This study aimed to evaluate the performance of water level classification from CCTV images in agricultural facilities such as reservoirs. Recently, the CCTV system, widely used for facility monitor or disaster detection, can automatically detect and identify people and objects from the images by developing new technologies such as a deep learning system. Accordingly, we applied the ResNet-50 deep learning system based on Convolutional Neural Network and analyzed the water level of the agricultural reservoir from CCTV images obtained from TOMS (Total Operation Management System) of the Korea Rural Community Corporation. As a result, the accuracy of water level detection was improved by excluding night and rainfall CCTV images and applying measures. For example, the error rate significantly decreased from 24.39 % to 1.43 % in the Bakseok reservoir. We believe that the utilization of CCTVs should be further improved when calculating the amount of water supply and establishing a supply plan according to the integrated water management policy.

경기도 화성시 벼 재배지의 기후스마트 농업 기반의 평가 (Climate-Smart Agriculture(CSA)-Based Assessment of a Local Rice Cultivation in Hwaseong-city, Gyeonggi-do)

  • 주옥정;소호섭;이상우;이영순
    • 한국환경농학회지
    • /
    • 제41권1호
    • /
    • pp.32-40
    • /
    • 2022
  • BACKGROUND: Climate-smart agriculture (CSA) has been proposed for sustainable agriculture and food security in an agricultural ecosystem disturbed by climate change. However, scientific approaches to local agricultural ecosystems to realize CSA are rare. This study attempted to evaluate the weather condition, rice production, and greenhouse gas emissions from the rice cultivation in Hwaseong-si, Gyeonggi-do to fulfill CSA of the rice cultivation. METHODS AND RESULTS: Over the past 3 years (2017~2019), Chucheong rice cultivar yield and methane emissions were analyzed from the rice field plot (37°13'15"N, 127° 02'22"E) in the Gyeonggi-do Agricultural Research and Extension Services located in Gisan-dong, Hwaseong-si, Gyeonggi-do. Methane samples were collected from three automated closed chambers installed in the plot. The weather data measured through automatic weather station located in near the plot were analyzed. CONCLUSION(S): The rice productivity was found to vary with weather environment in the agricultural ecosystem. And methane emissions are high in a favorable weather condition for rice growth. Therefore, it is necessary to minimize the trade-off between the greenhouse gas emission target for climate change mitigation and productivity improvement for CSA in a local rice cultivation.

농업기상 빅데이터를 활용한 스마트 식물병 관리 (Smart Plant Disease Management Using Agrometeorological Big Data)

  • 김광형;이준혁
    • 식물병연구
    • /
    • 제26권3호
    • /
    • pp.121-133
    • /
    • 2020
  • 기후변화와 이상기후, 급변하는 사회경제적 환경 하에 식량안보를 확보하고 지속가능한 성장을 위해서는 기존의 관행농업을 벗어나 빅데이터와 인공지능을 활용한 스마트농업으로의 전환이 시급하다. 스마트농업을 통해 식물병을 효율적으로 관리하기 위해서는 다양한 첨단기술과 융합할 수 있는 농업 빅데이터가 우선 확보되어야 한다. 본 리뷰에서는 스마트식물병관리를 위해 식물병리학 분야에서 기여할 수 있는 기상환경 및 농업 빅데이터에 대해 알아보고 이를 활용한 식물병의 예측, 모니터링 및 진단, 방제, 예방 및 위험관리의 각 단계별로 현재 우리가 어느 위치에 있는지를 살펴보았다. 이를 바탕으로 현재까지 스마트식물병관리를 위해 준비해온 것과 미흡했던 부분, 앞으로 나아가야 할 방향을 제시하고자 한다.

K-HAS와 비율보정 계수를 이용한 농업용 저수지의 비상연계 용수공급 가능량 분석 (Analysis of the Emergency Water Supply Capacity in Agricultural Reservoirs Using K-HAS and Ratio Correction Factors)

  • 김하영;이상현;나라;주동혁;유승환
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.59-71
    • /
    • 2023
  • As the frequency of drought increases due to climate change, water scarcity in agriculture would be a main issue. However, it seems difficult to solve the water scarcity by securing alternative water sources. The aim of this study is to analyze optimal water supply capacity of agricultural reservoir for emergency operation connecting reservoirs and dams. First, we simulated the water storage of agricultural reservoir playing the role emergency water supplier to other water facility such as dams and other reservoirs. In particular, the results of simulation of water storage through K-HAS model was calibrated using the optimization process based on ratio correction factors of outflow and inflow. Finally, the optimal amount of water supply securing water supply reliability in emergency interconnection operation was analyzed. The results of this study showed that Janchi reservoir could supply 12.8 thousand m3/day maintaining 90 % water supply reliability. The result of this study could suggest the standard for connecting water facilities as emergency water supply.

풍동실험에 의한 붐식 살포 농약의 노즐형태와 분사압력에 따른 비산 특성 분석 (Analyzing Drift Patterns of Spray Booms with Different Nozzle Types and Working Pressures in Wind Tunnel)

  • 박진선;이세연;최락영;정한나;노현호;유승화;송호성;홍세운
    • 한국농공학회논문집
    • /
    • 제63권5호
    • /
    • pp.39-47
    • /
    • 2021
  • With rising concerns about pesticide spray drifts, this study analyzed the drift patterns of two typically-used nozzles, XR nozzle and AI nozzle, concerning their working pressures and wind speeds by wind tunnel experiments. AI nozzle showed low drift potential with larger droplet sizes compared to XR nozzle. Airborne and deposition drifts of XR nozzle were two times higher than those of AI nozzle under high wind speeds (≥2 m s-1). In all cases, higher working pressures decreased the droplet sizes, thereby increasing the airborne and deposition drifts. Higher wind speeds also resulted in more airborne drifts, while ground deposition was increased under lower wind speeds. These effects of working pressures and wind speeds on the airborne and deposition drifts were observed at leeward distances less than 4 m from the nozzles. However, the airborne and deposition drifts were barely affected by the working pressures and wind speeds at leeward distances more than 11 m. The measurements were fitted to regression models of the drift curve with acceptable R2 values greater than 0.8, demonstrating that further studies will be useful to settle domestic issues of spray drifts.

스마트 팜을 이용한 효율적인 작물 재배 (Efficient crop cultivation using Smart Farm)

  • 권정혁;이창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.681-682
    • /
    • 2018
  • 현재 일정하지 않는 기후 때문에 여러 가지 피해가 속출하고 있다. 그 중에 제일 기후의 영향을 많이 받는 것은 농업일 것이다. 농업은 기후와 계절 등에 따라 키울 수 있는 작물들이 한정되어 있다. 이에 농업기술에 정보통신기술(ICT)을 융합하여 기존의 농업기술의 생산력을 향상시키는 스마트 팜을 개발한다. 라즈베리파이와 아두이노를 이용해 하드웨어와 소프트웨어를 제어하고 여러 가지 센서를 이용해 작물 재배에 필요한 환경을 인지하여 최적의 환경을 유지한다. 추가적으로 이러한 스마트 팜을 모바일이나 개인 PC로 조작할 수 있도록 설정해서 유동적인 스마트 팜을 구현한다.

  • PDF

농업용 저수지의 하한 관리 저수율 설정에 따른 농업용수 및 환경용수 공급 가능성 고찰 (A Study on the Potential of Agricultural Water and Environmental Flow Supply according to Regulating Lower Control Storage Rate for the Irrigation Reservoir)

  • 정지연;정민혁;범진아;박민경;이재남;유승환;윤광식
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.21-33
    • /
    • 2023
  • While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.

기후변화에 따른 농업생산기반시설 영향분석을 통한 정책추진 방안 연구 (Measure Improvement on Vulnerable Area based on Climate Change Impact on Agriculture Infrastructure)

  • 정경훈;송석호;정형모;오승헌;김수진;임세윤;주동혁;황세운;장민원;배승종;유승환
    • 농촌계획
    • /
    • 제26권4호
    • /
    • pp.81-91
    • /
    • 2020
  • This study was conducted to analyse climate change impact on agriculture infrastructure and propose improved measures on vulnerable areas. Recently, Climate change has resulted in damaging effects on agricultural fields through increases in drought intensity and flood risk. It is expected that this impact will increase over time. This study shows that Gyeong-gi and Chung-nam provinces are affected by drought and Gyeong-buk and Gyeong-nam provinces are affected by heavy rain. However, there are also regional variations within each province. Agricultural infrastructure affected by drought may also be affected by heavy rain. Increased damages on the infrastructure due to increased extreme weather events require preventive measures especially in vulnerable areas. In order to minimize the damage by climate change, we need to introduce a reform in the system which selects project region by analysing climate change impacts. Furthermore, impact assessment of climate change from projects such as 'water supply diversification', 'flooded farmland improvement', and 'irrigation facility reinforcement' also need to be adopted to improve the measures. The results of this study are expected to provide a foundation for establishing measures on coping with climate change in the agricultural sector.

서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석 (Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea)

  • 범진아;정민혁;박현진;최우정;김영주;윤광식
    • 한국농공학회논문집
    • /
    • 제65권1호
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.