• 제목/요약/키워드: Climate prediction

검색결과 794건 처리시간 0.031초

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • 한국방재학회 논문집
    • /
    • 제9권2호
    • /
    • pp.45-51
    • /
    • 2009
  • 지구기후모델을 이용하여 예측된 (1) 물성치와 (2) 현재 및 미래의 표면 에너지 입력상수의 가변성을 고려한 동결 및 융해깊이를 예측하기 위하여 확률론적 접근법이 도입되었다. 확률론적 접근법을 예시하기 위하여 극지방에서의 융해깊이 예측을 고려해보았다. 특히 확률론적 융해깊이 예측을 위하여 몬테카를로 시뮬레이션과 함께 Stefan 공식이 사용되었다. 시뮬레이션 결과는 물성치의 가변성을 보여주었다. 표면 에너지 입력상수와 온도 데이터는 융해깊이를 예측하는데 상당한 불확실성을 야기시킬 수 있다.

Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India

  • Roshni, Thendiyath;K., Md. Sajid;Samui, Pijush
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.319-328
    • /
    • 2017
  • Higher prediction efficacy is a very challenging task in any field of engineering. Due to global warming, there is a considerable increase in the global sea level. Through this work, an attempt has been made to find the sea level variability due to climate change impact at Haldia Port, India. Different statistical downscaling techniques are available and through this paper authors are intending to compare and illustrate the performances of three regression models. The models: Wavelet Neural Network (WNN), Minimax Probability Machine Regression (MPMR), Feed-Forward Neural Network (FFNN) are used for projecting the sea level variability due to climate change at Haldia Port, India. Model performance indices like PI, RMSE, NSE, MAPE, RSR etc were evaluated to get a clear picture on the model accuracy. All the indices are pointing towards the outperformance of WNN in projecting the sea level variability. The findings suggest a strong recommendation for ensembled models especially wavelet decomposed neural network to improve projecting efficiency in any time series modeling.

풍력환기에 의한 아트리움의 열환경 개선에 관한 연구 (Study on Improvement of Thermal Environment by using Wind-driven Natural Ventilation on the Atrium)

  • 노지웅
    • 한국태양에너지학회 논문집
    • /
    • 제32권1호
    • /
    • pp.40-47
    • /
    • 2012
  • According to the advancement of computer and simulation method, it becomes possible to predict indoor climate precisely by using CFD simulation coupled with heat conduction, convection, and radiation. However, predicting the indoor climate is generally conducted by using a simplified CFD coupled simulation method since it takes quite long time to use a general CFD simulation method. In this study, a simplified CFD coupled simulation was conducted in order to find out the effect of natural ventilation by wind-driven in atrium. As a result of calculation, it was clarified that the natural ventilation driven by temperature difference was not enough to remove the accumulated heat of upper zone and the natural ventilation by wind-driven was needed. Finally, it is required to decide the window direction and size based on correct indoor climate prediction method for the effective use of natural ventilation by wind-driven.

Challenges of Groundwater as Resources in the Near Future

  • Lee, Jin-Yong
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권2호
    • /
    • pp.1-9
    • /
    • 2015
  • Groundwater has been a very precious resource for human life and economic development in the world. With increasing population and food demand, the groundwater use especially for agriculture is largely elevated worldwide. The very much large groundwater use results in depletion of major aquifers, land subsidences in many large cities, anthropogenic groundwater contamination, seawater intrusion in coastal areas and accompanying severe conflicts for water security. Furthermore, with the advent of changing climate, securing freshwater supply including groundwater becomes a pressing and critical issue for sustainable societal development in every country because prediction of precipitation is more difficult, its uneven distribution is aggravating, weather extremes are more frequent, and rising sea level is also threatening the freshwater resource. Under these difficulties, can groundwater be sustaining its role as essential element for human and society in the near future? We have to focus our efforts and wisdom on answering the question. Korean government should increase its investment in securing groundwater resources for changing climate.

고해상도 강우자료와 딥러닝 알고리즘을 활용한 수위 변동성 예측 (Utilizing deep learning algorithm and high-resolution precipitation product to predict water level variability)

  • 한희찬;강나래;윤정수;황석환
    • 한국수자원학회논문집
    • /
    • 제57권7호
    • /
    • pp.471-479
    • /
    • 2024
  • 기후변화로 인한 집중호우의 발생으로 홍수 피해가 심각해지고 있다. 하천의 수위 변동성을 예측하고 신속한 홍수 예·경보를 위해 물리적 기반의 수문 모형이 활용됐다. 최근에는 수문 데이터 간의 비선형적인 관계를 기반으로 머신러닝, 딥러닝 알고리즘을 활용한 수문 모의가 주목받고 있다. 본 연구에서는 Long Short-Term Memory (LSTM) 알고리즘을 활용하여 섬진강 수계의 하천 수위를 예측하고자 한다. 또한 Climate Prediction Center morphing method (CMORPH) 기반의 격자형 강우 자료를 알고리즘의 입력자료로 적용하여 지상 데이터의 한계를 보완하고자 한다. CMORPH 데이터와 LSTM 알고리즘을 결합한 모형의 수위 예측 결과는 평균 CC가 0.98, RMSE는 0.07 m, 그리고 NSE는 0.97로 나타났다. 향후 딥러닝과 원격자료를 활용하여 수위 예측을 수행한다면 지상 관측 데이터의 단점을 보완하고, 신뢰도 높은 예측 결과를 얻을 수 있을 것으로 기대되는 바이다.

전지구 계절 예측 시스템의 토양수분 초기화 방법 개선 (Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System)

  • 서은교;이명인;정지훈;강현석;원덕진
    • 대기
    • /
    • 제26권1호
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.

GloSea6 모형에서의 성층권 돌연승온 하층 영향 분석: 2018년 성층권 돌연승온 사례 (Downward Influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW Case Study)

  • 홍동찬;박현선;손석우;김주완;이조한;현유경
    • 대기
    • /
    • 제33권5호
    • /
    • pp.493-503
    • /
    • 2023
  • This study investigates the downward influences of sudden stratospheric warming (SSW) in February 2018 using a subseasonal-to-seasonal forecast model, Global Seasonal forecasting system version 6 (GloSea6). To quantify the influences of SSW on the tropospheric prediction skills, free-evolving (FREE) forecasts are compared to stratospheric nudging (NUDGED) forecasts where zonal-mean flows in the stratosphere are relaxed to the observation. When the models are initialized on 8 February 2018, both FREE and NUDGED forecasts successfully predicted the SSW and its downward influences. However, FREE forecasts initialized on 25 January 2018 failed to predict the SSW and downward propagation of negative Northern Annular Mode (NAM). NUDGED forecasts with SSW nudging qualitatively well predicted the downward propagation of negative NAM. In quantity, NUDGED forecasts exhibit a higher mean squared skill score of 500 hPa geopotential height than FREE forecasts in late February and early March. The surface air temperature and precipitation are also better predicted. Cold and dry anomalies over the Eurasia are particularly well predicted in NUDGED compared to FREE forecasts. These results suggest that a successful prediction of SSW could improve the surface prediction skills on subseasonal-to-seasonal time scale.

고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측 (Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change)

  • 한종수;김성진;김동민;이사우;황상철;김지원;정세웅
    • 환경영향평가
    • /
    • 제30권5호
    • /
    • pp.271-296
    • /
    • 2021
  • 댐 저수지 수온성층은 수직혼합을 억제하여 저층의 빈산소층 형성과 퇴적물 영양염류 용출을 일으키는 원인이므로 미래 기후변화에 따른 저수지 성층구조의 변화는 수질 및 수생태 관리 측면에서 매우 중요하다. 본 연구의 목적은 대청댐 저수지를 대상으로 고빈도 자료기반의 통계적 저수지 유입 수온 예측 모델을 개발하고, RCP(Representative Concentration Pathways) 기후변화 시나리오를 고려한 미래 유입 수온변화와 대청호 성층구조의 변화를 예측하는 데 있다. 대청호 유입 수온 예측을 위해 개발한 Random Forest 회귀 예측모델(NSE 0.97, RMSE 1.86℃, MAPE 9.45%)은 실측 수온의 통계량과 변동성을 적절히 재현하였다. 지역 기후 모델(HadGEM3-RA)로 예측된 RCP 시나리오별 미래 기상자료를 Random Forest 모델에 입력하여 유입 수온을 예측하고 3차원 저수지 수리 모델을 이용하여 기후변화에 따른 대청호의 미래(2018~2037, 2038~2057, 2058~2077, 2078~2097) 수온성층 구조 변화를 예측하였다. 예측 결과, 미래 기후 시나리오별로 대기 온도와 저수지 유입 수온의 증가속도는 각각 0.14~0.48℃/10year와 0.21~0.43℃/10year의 범위로써 지속적으로 증가하였다. 계절별 분석 결과, RCP 2.6 시나리오의 봄과 겨울철을 제외한 모든 시나리오에서 유입 수온은 증가 경향이 통계적으로 유의하였으며, 탄소저감 노력이 약한 기후 시나리오로 갈수록 수온의 증가속도가 빨랐다. 저수지 표층 수온의 증가속도는 0.04~0.38℃/10year 범위였으며, 모든 시나리오에서 성층화 기간이 점진적으로 증가되었다. 특히 RCP 8.5 시나리오 적용 시 성층일수는 약 24일 증가하는 것으로 전망되었다. 연구 결과는 기후변화가 호소의 성층강도를 강화하고 성층형성 기간을 장기화한다는 선행연구 결과와 일치하며, 수온성층의 장기화는 저층 빈산소층 확대, 퇴적물-수체간 영양염류 용출량 증가, 수체 내 조류 우점종의 변화 등 수생태계 변화를 유발할 수 있음을 시사한다.

SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가 (Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model)

  • 박민지;신형진;박종윤;강부식;김성준
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.25-34
    • /
    • 2009
  • The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.

기후변화에 따른 한반도 참식나무 생육지 예측과 영향 평가 (Habitat prediction and impact assessment of Neolitsea sericea (Blume) Koidz. under Climate Change in Korea)

  • 윤종학;카츠히로 나카오;김중현;김선유;박찬호;이병윤
    • 환경영향평가
    • /
    • 제23권2호
    • /
    • pp.101-111
    • /
    • 2014
  • The research was carried out in order to find climate factors which determine the distribution of Neolitsea sericea, and the potential habitats (PHs) under the current climate and three climate change scenario by using species distribution models (SDMs). Four climate factors; the minimum temperature of the coldest month (TMC), the warmth index (WI), summer precipitation (PRS), and winter precipition (PRW) : were used as independent variables for the model. Three general circulation models under A1B emission scenarios were used as future climate scenarios for the 2050s (2040~2069) and 2080s (2070~2099). Highly accurate SDMs were obtained for N. sericea. The model of distribution for N. sericea constructed by SDMs showed that minimum temperature of the coldest month (TMC) is a major climate factor in determining the distribution of N. sericea. The area above the $-4.4^{\circ}C$ of TMC revealed high occurrence probability of the N. sericea. Future PHs for N. sericea were projected to increase respectively by 4 times, 6.4 times of current PHs under 2050s and 2080s. It is expected that the potential of N. sericea habitats is expanded gradually. N. sericea is applicable as indicator species for monitoring in the Korean Peninsula. N. sericea is necessary to be monitored of potential habitats.