• Title/Summary/Keyword: Climate normal data

Search Result 116, Processing Time 0.033 seconds

El Niño-Southern Oscillation, Indian Ocean Dipole Mode, a Relationship between the Two Phenomena, and Their Impact on the Climate over the Korean Peninsula (엘니뇨-남방진동, 인도양 쌍극자 모드, 두 현상의 관련성, 그리고 한반도 기후에 대한 영향)

  • Cha, Eun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • This paper investigated the relationship between El $Ni\widetilde{n}o-Southern$ Oscillation (ENSO) and Indian Ocean Dipole (IOD) mode events and the impacts of these two phenomena on the climate, temperature and precipitation, of the Korean Peninsula. Data gathered from 1954 to 2004 were used for analysis, which included NINO 3 index, IOD index, and monthly mean precipitation and temperature at eleven locations in Korea. Statistical results showed that the IOD and ENSO were significantly correlated in Spring and Fall. It was clearly shown that the distribution of the sea surface temperature in the Indian Ocean has seen the Southern and Northern Oscillation in El $Ni\widetilde{n}o$ year, and Eastern and Western in IOD year. On the other hand, in El $Ni\widetilde{n}o$ you, the mean temperature of the Korea Peninsula was lower than normal in Summer and higher in Winter and its precipitation was more than normal in both Summer and Winter. However, significant correlation was not found in IOD year. In addition, the global atmospheric circulations during the major IOD years are less influential, unlike those of El $Ni\widetilde{n}o$ events.

On Mapping Growing Degree-Days (GDD) from Monthly Digital Climatic Surfaces for South Korea (월별 전자기후도를 이용한 생장도일 분포도 제작에 관하여)

  • Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The concept of growing degree-days (GDD) is widely accepted as a tool to relate plant growth, development, and maturity to temperature. Information on GDD can be used to predict the yield and quality of several crops, flowering date of fruit trees, and insect activity related to agriculture and forestry. When GDD is expressed on a spatial basis, it helps identify the limits of geographical areas suitable for production of various crops and to evaluate areas agriculturally suitable for new or nonnative plants. The national digital climate maps (NDCM, the fine resolution, gridded climate data for climatological normal years) are not provided on a daily basis but on a monthly basis, prohibiting GDD calculation. We applied a widely used GDD estimation method based on monthly data to a part of the NDCM (for Hapcheon County) to produce the spatial GDD data for each month with three different base temperatures (0, 5, and $10^{\circ}C$). Synthetically generated daily temperatures from the NCDM were used to calculate GDD over the same area and the deviations were calculated for each month. The monthly-data based GDD was close to the reference GDD using daily data only for the case of base temperature $0^{\circ}C$. There was a consistent overestimation in GDD with other base temperatures. Hence, we estimated spatial GDD with base temperature $0^{\circ}C$ over the entire nation for the current (1971-2000, observed) and three future (2011-2040, 2041-2070, and 2071-2100, predicted) climatological normal years. Our estimation indicates that the annual GDD in Korea may increase by 38% in 2071-2100 compared with that in 1971-2000.

Standar Dization and Evaluation of PDSI Calculation Method for Korean Drought Management Agencies (국내 가뭄관리 기관별 PDSI 산정방법의 표준화 및 평가)

  • Bae, Deg-Hyo;Sohn, Kyung-Hwan;Kim, Hyun-Kyung;Lee, Joo-Heon;Lee, Dong-Ryul;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.539-547
    • /
    • 2013
  • The objective of this study is to standardize the calculation method of Palmer Drought Severity Index (PDSI) for the three Drought Management Agencies (DMA) in south Korea, and to evaluate the PDSI applicability. For comparison and review of the method, the code and input data of PDSI are collected from each DMA. The calculation method is the same, but the used input data (number of meteorological stations, normal year period, Available Water Capacity (AWC) of the soil) are different. Through discussions with drought experts and literature review, the standardized method is determined. 61 stations which have the data period more than 30 years are selected. Also the normal year is fixed for 30 years and updated every 10 years. The observed AWC is utilized using GIS data. Empirical equation of PDSI is re-estimated according to domestic climate characteristics. For evaluating the standardized PDSI, past drought events are investigated and drought indices including the existing SPI and PDSI are used for comparative analysis. As results, although the accuracy of standardized PDSI through ROC analysis is lower than SPI, the newly standardized PDSI is better than existing PDSI from DMA, Also it reasonably explain the spatial drought situation through the spatial analysis.

Sea Surface Temperature Related to the Characteristic of the Coastal Climate in the Southern Part of Korea (우리나라 남부해안 기후의 특성과 해면수온과의 관계)

  • 한영호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.65-69
    • /
    • 1981
  • The oceanic effect on the climate of the southern coast of Korea was analysed based on the sea surface temperature and in order to study relationships between the fluctuation of the sea surface temperature and that of climatic elements. Meteolorogical data from 1960 to 1979 were used. In the year when difference between the air and water temperature was maximum, the air temperature in southern coast was higher than normal year. A fluctuation of the sea surface temperature plays an important influence to determine the variation of the air temperature in the coastal area. Humidity of the coastal climate depends upon the oceanic effect in summer, but not in winter. This results may be due to prevailing wind effect. The oceanic effect on the precipitation in the coastal area is not found.

  • PDF

Uncertainty Assessment of Emission Factors for Pinus densiflora using Monte Carlo Simulation Technique (몬테 카를로 시뮬레이션을 이용한 소나무 탄소배출계수의 불확도 평가)

  • Pyo, Jung Kee;Son, Yeong Mo;Jang, Gwang Min;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.477-483
    • /
    • 2013
  • The purpose of this study was to calculate uncertainty of emission factor collected data and to evaluate the applicability of Monte Carlo simulation technique. To estimate the distribution of emission factors (Such as Basic wood density, Biomass expansion factor, and Root-to-shoot ratio), four probability density functions (Normal, Lognormal, Gamma, and Weibull) were used. The two sample Kolmogorov-Smirnov test and cumulative density figure were used to compare the optimal probability density function. It was observed that the basic wood density showed the gamma distribution, the biomass expansion factor results the log-normal distribution, and root-shoot ratio showd the normal distribution for Pinus densiflora in the Gangwon region; the basic wood density was the normal distribution, the biomass expansion factor was the gamma distribution, and root-shoot ratio was the gamma distribution for Pinus densiflora in the central region, respectively. The uncertainty assessment of emission factor were upper 62.1%, lower -52.6% for Pinus densiflora in the Gangwon region and upper 43.9%, lower -34.5% for Pinus densiflora in the central region, respectively.

Thermo-sensitive Clothing Development by Consumer Investigation and Wearing Test (소비자 조사와 착의 실험을 통한 온도감응형 기능성 의류개발을 위한 기초연구)

  • Sang, Jeong-Seon;Chung, Kyunghwa;Park, Juhyun;Oh, Kyung Wha
    • Fashion & Textile Research Journal
    • /
    • v.19 no.1
    • /
    • pp.90-100
    • /
    • 2017
  • In this research, consumer awareness investigation and wearing test were carried out for obtaining useful data on the development of thermo-sensitive functional clothing material. A survey involved 216 people in Seoul and Kyeonggi-do, and 200 questionnaires data were analyzed by descriptive statistics and frequency using SPSS 17.0. Four healthy men in twenties were participated for wearing test. Subjects in normal loungewear were exposed to temperature change from the initial temperature $30^{\circ}C$ down to $5^{\circ}C$ for an hour in a climate chamber. The environmental temperature, surface temperature of garment and skin were measured. As a result, most of respondents have all season clothing products such as underwear, hosiery, and jogging suit for loungewear. Also, thermo regulator y functional clothes are frequently used as underwear and sweat shirt. The consumer awareness investigation on thermo regulatory functional clothing showed that the most important key buying factor is quick climate temperature response, easy maintenance, design and cost, in that order. Surface temperature of garment went down with the cooling down of environmental temperature. The lower environmental temperature, the greater temperature difference by body part showed. Skin temperature change by environmental temperature showed similar tendency of garment surface temperature. In comparison between garment surface and body skin, temperature difference became larger under the lower environmental temperature.

Spatiotemporal Assessment of the Late Marginal Heading Date of Rice using Climate Normal Data in Korea (평년 기후자료를 활용한 국내 벼 안전출수 한계기의 시공간적 변화 평가)

  • Lee, Dongjun;Kim, Junhwan;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.316-326
    • /
    • 2014
  • Determination of the late marginal heading date (LMHD), which would allow estimation of the late marginal seeding date and the late marginal transplanting date, would help identification of potential double cropping areas and, as a result, establishment of cropping systems. The objective of this study was to determine the LMHD at 51 sites in Korea. For these sites, weather data were obtained from 1971 to 2000 and from 1981 to 2010, which represent past and current normal climate conditions, respectively. To examine crop productivity on the LMHD, climatic yield potential (CYP) was determined to represent the potential yield under a given climate condition. The LMHD was calculated using accumulated temperature for 40 days with threshold values of $760^{\circ}C$, $800^{\circ}C$, $840^{\circ}C$ and $880^{\circ}C$. The value of CYP on a given LMHD was determined using mean temperature and sunshine duration for 40 days from the LMHD. The value of CYP on the LMHD was divided by the maximum value of CYP (CYPmax) in a season to represent the relative yield on the LMHD compared with the potential yield in the season. Our results indicated that the LMHD was delayed at most sites under current normal conditions compared with past conditions. Spatial variation of the LMHD differed by the threshold temperature. Overall, the minimum value of CYP/CYPmax was 81.8% under all of given conditions. In most cases, the value of CYP/CYPmax was >90%, which suggested that yield could be comparable to the potential yield even though heading would have occurred on the LMHD. When the LMHD could be scheduled later without considerable reduction in yield, the late marginal transplanting date could also be delayed accordingly, which would facilitate doublecropping in many areas in Korea. Yield could be affected by sudden change of temperature during a grain filling period. Yet, CYP was calculated using mean temperature and sunshine duration for 40 days after heading. Thus, the value of CYP/CYPmax may not represent actual yield potential due to change of the LMHD, which suggested that further study would be merited to take into account the effect of weather events during grain filling periods on yield using crop growth model and field experiments.

A spatial prediction for the flowering and autumnal dates in Korea (국내 벚꽃 개화 및 단풍 시기에 대한 공간예측)

  • Jin, Hyang Gon;Kim, Sang Wan;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.417-426
    • /
    • 2017
  • It is important to predict the flowering dates of Japanese cherry and autumnal dates in Korea. Flowering date is decided by heating requirement with daily maximum and minimum temperature used to calculate the pre-determined heating requirements for flowering. Recent, changes in climate have impacted the flowering season of Japanese cherry in Korea. When compared with the current normal, the flowering of Japanese cherry is expected to be about 10 days earlier than in near future normal years. In this paper, we first consider a linear model based on meteorological data that predicts the flowering date and then incorporate a spatial structure into the model. Real data analysis indicates that the proposed approach provides more reasonable predicted dates.

Moderate fraction snow mapping in Tibetan Plateau

  • Hongen, Zhang;Suhong, Liu;Jiancheng, Shi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.75-77
    • /
    • 2003
  • The spatial distribution of snow cover area is a crucial input to models of hydrology and climate in alpine and other seasonally snow covered areas.The objective in our study is to develop a rapidly automatic and high accuracy snow cover mapping algorithm applicable for the Tibetan Plateau which is the most sensitive about climatic change. Monitoring regional snow extent reqires higher temoral frequency-moderate spatial resolution imagery.Our algorithm is based AVHRR and MODIS data and will provide long-term fraction snow cover area map.We present here a technique is based on the multiple endmembers approach and by taking advantages of current approaches, we developed a technique for automatic selection of local reference spectral endmembers.

  • PDF

Distribution and Trend Analysis of the Significant Wave Heights Using KMA and ECMWF Data Sets in the Coastal Seas, Korea (KMA와 ECMWF 자료를 이용한 연안 유의파고의 분포 및 추세분석)

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hong Yeon;Seo, Kyoung Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.129-138
    • /
    • 2017
  • The coastal wave environment is a very important factor that directly affects the change of coastal topography, the habitat of marine life, and the design of offshore structures. In recent years, changes in the wave environment due to climate change are expected, and a trend analysis of the wave environment using available data sets is required. In this paper, significant wave heights which are measured at six ocean buoys (Deokjeokdo, Oeyeondo, Chibaldo, Marado, Pohang, Ullengdo) have been used to analyze long-term trend of normal waves. In advance, the outlier of measured data by Korea Meteorological Administration have been removed using Rosner test. And Pearson correlation analysis between the measured data and ECMWF reanalysis data has been conducted. As a results, correlation coefficient between two data were 0.849~0.938. Meanwhile, Mann-Kendall test has been used to analyze the long-term trend of normal waves. As a results, it was found that there were no trend at Deokjeokdo, Oeyeondo and Chibaldo. However, Marado, Pohang and Ullengdo showed an increasing tendency.