• Title/Summary/Keyword: Climate impacts

Search Result 619, Processing Time 0.027 seconds

Air Pollution Trends in Japan between 1970 and 2012 and Impact of Urban Air Pollution Countermeasures

  • Wakamatsu, Shinji;Morikawa, Tazuko;Ito, Akiyoshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.177-190
    • /
    • 2013
  • Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.

Characteristics, Threats and Management of Philippine Wetlands (필리핀 습지의 특성, 위협 및 관리)

  • Sespene, Shemelyn M.;Maniquiz-Redillas, Marla;Kim, Lee-Hyung;Choo, Yun-wook
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.250-261
    • /
    • 2016
  • The Philippines is a naturally water-rich archipelago capable of sustaining its ecological goods and providing services and needs of its people. Several waterbodies have been declared as natural wetlands in the country supporting the needs of community like water and food. In this study, 65 natural wetlands were considered including six sites that were identified as 'Wetlands of International Importance' such as Naujan Lake National Park, Agusan Marsh Wildlife Sanctuary, Olango Island Wildlife Sanctuary, Tubbataha Reefs Natural Park, Las $Pi{\tilde{n}}as-Para{\tilde{n}}aque$ Critical Habitat and Ecotourism Area and Puerto Princesa Subterranean River National Park. There are 22 wetland types presented in this research categorizing the Philippine wetlands. Philippine wetlands are now facing tremendous challenges such as land use conversion, abuse of resources, pollution coming from domestic, industrial and agricultural activities, and climate change. This paper provides an overview of Philippine wetlands in terms of their characteristics and components, impacts in the ecosystem, and the challenges they are dealing with. Moreover, the preservation measures that the government and private agencies implements to these wetlands were discussed and assessed. The enforcement of local and national laws concerning wetlands is found to be inadequate resulting in poor quality wetlands. The preservation and utilization of these wetlands can be maximized with a voluntary participation of whole Philippine community.

Evaluation of the Impact of Land Surface Condition Changes on Soil Moisture Field Evolution (지표면 조건의 변화에 따른 토양수분의 변화 평가)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.795-806
    • /
    • 1998
  • Soil moisture is affected by regional climate, soil characteristics and land surface condition, etc,. Especially, the changes in land surface condition is more than other factors, which is mainly due to rapid urbanization and industrialization. This study is to evaluate how the change of land surface condition impacts on soil moisture field evolution using a simple model of soil moisture dynamics. For the quantification of soil moisture field, the first half of the paper is spared for the statistical characterization based on the first- and second-order statistics of Washita '92 and Monsoon '90 data. The second half is for evaluating the impact of land cover changes through simulation study using a model for soil moisture dynamics. The model parameters, the loss rate and the diffusion coefficient, have been estimated using the observed data statistics, where the changes of surface conditions are considered into the model by applying various parameter sets with different second-order statistics. This study is concentrated on evaluating the impact due to the changes of land surface condition variability. It is because we could easily quantify the impact of the changes of its areal mean based on the linear reservoir concept. As a result of the study, we found; (1)as the variability of land surface condition, increases, the soil moisture field dries up more easily, (2)as the variabilit y of the soil moisture field is the highest at the beginning of rainfall and decreases as time goes on to show the variability of land surface condition, (3)the diffusion effect due to surface runoff or water flow through the top soil layer is limited to a period of surface runoff and its overall impact is small compared to that of the loss rate field.

  • PDF

The Changes of UV-B Radiation at the Surface due to Stratospheric Aerosols (성층권 에어로졸에 의한 지표면 UV-B 복사량 변동)

  • Jai-Ho Oh;Joon-Hee Jung;Jeong-Woo Kim
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • A radiative transfer model with two-stream/delta-Eddington approximation has been developed to calculate the vertical distributions of atmospheric heating rates and radiative fluxes. The performance of the model has been evaluated by comparison with the results of ICRCCM (Intercomparison of radiative codes in climate models). It has been demonstrated that the presented model has a capability to calculate the solar radiation not only accurately but also economically. The characteristics of ultraviolet-B radiation (UV-B; 280-320nm) are examined by comparison of relation between the flux at the top of atmosphere and that at the surface. The relation of UV-B is quadratic due to the strong ozone absorption in this band. Also, the dependence of the UV-B radiation on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption has been tested with various solar zenith angles. The surface UV-B increases as the solar zenith angle increases. The existence of stratospheric aerosols causes an increase in the planetary albedo due to the aerosols' backscattering. The planetary albedo with aerosol's effect has been increases as the solar zenith angle is not sensitive. It may be caused by the fact that the aerosols' scattering effect becomes saturated with the relatively long path length in a large solar zenith angle. Finally, the regional impact of stratospheric aerosols due to volcanic eruption on the intensity of UV-B radiation at the surface has been estimated. A direct effect is that the flux is diminished at the low latitudes, while it is enhanced in the high latitudes by the aerosols' photon trap or twilight effect. In the high latitudes, both aerosols' scattering and ozone absorption have strong and opposite impacts to the surface UV-B radiation is located at the mid-latitudes during spring season in both hemispheres.

  • PDF

Identification of yearly variation in Hwacheon dam inflow using trend analysis and hydrological sensitivity method (경향성 분석과 수문학적 민감도 기법을 이용한 화천댐 유입량의 연별 변동량 규명)

  • Kim, Sang Ug;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.425-438
    • /
    • 2018
  • Existing studies that analyze the causes and effects of water circulation use mostly rainfall - runoff models, which requires much effort in model development, calibration and verification. In this study, hydrological sensitivity analysis which can separate quantitatively the impacts by natural factors and anthropogenic factor was applied to the Hwacheon dam upper basin from 1967 to 2017. As a result of using various variable change point detection methods, 1999 was detected as a statistically significant change point. Especially, based on the hydrological sensitivity analysis using 5 Budyko based functions, it was estimated that the average inflow reduction amount by Imnam dam construction was $1.890\;billion\;m^3/year$. This results in this study was slightly larger than the those by existing researchers due to increase of rainfall and decrease of Hwacheon dam inflow. In future, it was suggested that effective water management measures were needed to resolve theses problems. Especially, it can be suggested that the monthly or seasonal analysis should be performed and also the prediction of discharge for future climate change should be considered to establish resonable measures.

An Analysis on the Economic Impacts of the Bio-gas Supply Sector (바이오가스 공급 확대의 경제적 파급효과 분석)

  • Baek, Min-Ji;Kim, Ho-Young;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.74-82
    • /
    • 2014
  • The government is planning to expand the bio-gas supply as a method for mitigating greenhouse gas emissions to deal with climate change. By means of a policy instrument, the government is considering an introduction of the Renewable Fuel Standard (RFS) whose targets include bio-gas. This paper attempts to look into the economic effects of expanding the bio-gas supply by applying an input-output (I-O) analysis using a 2011 I-O table. The bio-gas supply sector consists of liquefied petroleum gas supply sector and city gas supply sector, based on the tenets of introducing the RFS. The production-inducing effect, value-added creation effect, and employment-inducing effect of the bio-gas sector are analyzed. The supply shortage effect and the price pervasive effect are also investigated. The results show that the production or investment of 1.0 won in the bio-gas supply sector induces the production of 1.0539 won and the value-added of 0.1998 won in the national economy. Moreover, the production or investment of 1.0 billion won, supply shortage of 1.0 won, and a price increase of 10.0% in the bio-gas supply sector touch off the employment of 0.5279 person, 1.6229 won, and an increase in overall price level by 0.0183%, respectively.

Effect of Lugol's Iodine Preservation on Cyanobacterial Biovolume and Estimate of Live Cell Biovolume Using Shrinkage Ratio (Lugol's Iodine Solution 첨가 후 보존 기간별 남조류 세포부피 변화 및 수축비를 이용한 생세포 부피 산정)

  • Park, Hae-Kyung;Lee, Hyeon-Je;Lee, Hae-Jin;Shin, Ra-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.375-381
    • /
    • 2018
  • The monitoring of phytoplankton biomass and community structure is essential as a first step to control the harmful cyanobacterial blooms in freshwater systems, such as seen in rivers and lakes, due to the process of eutrophication and climate change. In order to quantify the biomass of phytoplankton with a wide range in size and shape, the measurement of cell biovolume along with cell density is required for a comprehensive review on this issue. However, most routine monitoring programs preserve the gathered phytoplankton samples before analysis using chemical additives, because of the constraint of time and the number of samples. The purpose of this study was to investigate the cell biovolume change characteristics of six cyanobacterial species, which are common bloom-causing cyanobacteria in the Nakdong River, after the preservation with Lugol's iodine solution. All species showed a statistically significant difference after the addition of Lugol's iodine solution compared to the live cell biovolume, and the cell biovolume decreased to the level of 34.0 ~ 56.3 % at maximum in each species after the preservation. The nonlinear regression models for determining the shrinkage ratio by a preservation period were derived by using the cell biovolume measured until 180 days preservation of each target species, and the equation to convert the cell biovolume measured after preservation for a certain period to the cell biovolume of viable cell was derived using that formula. The conversion equation derived from this study can be used to estimate the actual cell biovolume in the natural environment at the time of sampling, by using the measured biovolume after the preservation in the phytoplankton monitoring. Moreover this is expected to contribute to the final interpretation of the water quality and aquatic ecosystem impacts due to the cyanobacterial blooms.

A Study on the Impacts of Paste Type Torrefied Wood Flour Coagulants on Water Ecosystem (반탄화목분 Paste상 응집제의 수생태계 미치는 영향에 관한 연구)

  • YANG, Seung Min;LEE, Seok Eon;PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.709-720
    • /
    • 2019
  • Due to global warming and abnormal climate, the incidence and scale of green tracts in rivers and water intake dam are increasing every year. Therefore, in this study, developed eco friendly positively charged Torrefied Wood Flour(TWF) coagulant by reusing wood damaged by blight as a natural material. In order to evaluate the effect of coagulant on water ecosystem, green algae contaminated water was collected and TOC showed high removal rate of 86% ~ 92% under 1% and 5% TWF C-PAM treatment condition. The $NH_3-N$ showed 53% removal efficiency. The average pH of the polluted water was 7.9 in the case of hydrogen ion concentration, and the pH of the treated water was in the range of 6.5 ~ 7.7, It was found to be suitable for water quality standards. In ecotoxicity tests, all the results of the experiment showed that both the number of green algae and that of treated water were not affected by the survival of the daphnia. Therefore, as a result of the analyzing, developed paste type TWF coagulants is considered to be able to remove algae using natural resources.

Review on Coastline Change and Its Response Along the Cotonou Coast, Benin in the Gulf of Guinea, West Africa (서아프리카 기니만에 있는 베냉 코토누의 해안선 변화와 대응에 대한 고찰)

  • Yang, Chan-Su;Hong, Hyeyeon;Shin, Dae-Woon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.691-699
    • /
    • 2021
  • The global surface temperature has risen critically over the past century and according to the IPCC Fifth Assessment Report 2014, existing risks in natural and human systems will worsen. Coastal erosion is mostly caused by climate change and among all the coastal areas at risk, Benin, which is part of the Gulf of Guinea, has been ranked very highly as a vulnerable region. Therefore, in this review, we focus on the evolution of coastline change in Cotonou of Benin, summarizing its resultant impacts and applied measures around the coast area by reviewing previous studies. Signs of coastal erosion in Cotonou appeared in 1963. After 39 years, the east shoreline of Cotonou has retreated by 885 m, resulting in the disappearance of more than 800 houses. To solve this problem, Benin authorities built seven groynes in 2013, and have increased the number of the structure as a way to interrupt water flow and limit the movement of sediment. Over the region, shorelines appeared preserved accordingly. In contrast, areas located further east, where groynes were not installed, have suf ered from intensive erosion at a rate of 49 m/yr. In the future, as a next step, the effectiveness of groynes should be studied with local and broader perspectives.

Changes in the Water Environment Based on the Statistical Data in the Lake Paldang (통계로 보는 팔당호 물환경 변화)

  • Yu, Soonju;Lee, Eunjeong;Park, Minji;Kim, Kapsoon;Im, Jongkwon;Ryu, Ingu;Choi, Hwangjeong;Byeon, Myeongseop;Noh, Hyeran
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.688-702
    • /
    • 2018
  • Since the 1970s regulations against the pollution of drinking water have been introduced in Lake Paldang watershed area. To understand the effects of water environment management policies and the impacts of climate changes on Lake Paldang, a long-term comprehensive study of this watershed and the changes in its water environment is required. In this study, we analyzed changes in the weather, hydrology, sources of pollution, water quality, and algal development from 2000 to 2015 year based on the statistical data provided by several national information systems. While the population and amount of sewage in the Lake Paldang watershed increased by about 1.5 times, the amount of animal manure showed a decreasing trend during the same period. The wastewater also increased by about 1.5 times while the amount of water intakes rose by about 1.14 times. The water quality in front of the Paldang Dam, which is the representative monitoring site of the Lake Paldang, was stable. The annual average BOD concentration remained within 2 mg/L, which is a "Good (lb)" level according to the environment standards of Republic of Korea. The development of phytoplankton and harmful cyanobacteria were largely influenced by meteorological factors.