DOI QR코드

DOI QR Code

Identification of yearly variation in Hwacheon dam inflow using trend analysis and hydrological sensitivity method

경향성 분석과 수문학적 민감도 기법을 이용한 화천댐 유입량의 연별 변동량 규명

  • Kim, Sang Ug (Department of Civil Engineering, Kangwon National University) ;
  • Lee, Cheol-Eung (Department of Civil Engineering, Kangwon National University)
  • 김상욱 (강원대학교 공과대학 토목공학과) ;
  • 이철응 (강원대학교 공과대학 토목공학과)
  • Received : 2018.01.26
  • Accepted : 2018.02.13
  • Published : 2018.05.31

Abstract

Existing studies that analyze the causes and effects of water circulation use mostly rainfall - runoff models, which requires much effort in model development, calibration and verification. In this study, hydrological sensitivity analysis which can separate quantitatively the impacts by natural factors and anthropogenic factor was applied to the Hwacheon dam upper basin from 1967 to 2017. As a result of using various variable change point detection methods, 1999 was detected as a statistically significant change point. Especially, based on the hydrological sensitivity analysis using 5 Budyko based functions, it was estimated that the average inflow reduction amount by Imnam dam construction was $1.890\;billion\;m^3/year$. This results in this study was slightly larger than the those by existing researchers due to increase of rainfall and decrease of Hwacheon dam inflow. In future, it was suggested that effective water management measures were needed to resolve theses problems. Especially, it can be suggested that the monthly or seasonal analysis should be performed and also the prediction of discharge for future climate change should be considered to establish resonable measures.

물순환에 영향을 미치는 원인과 결과를 분석하는 기존의 연구들은 대부분 강우-유출모형을 사용하고 있어 모형의 구축 및 매개변수의 보정과 검증에 많은 노력이 필요하다. 본 연구에서는 수문기상자료만을 이용하여 유량의 변동성분을 정량화할 수 있는 수문학적 민감도 분석기법을 화천댐 상류유역에 적용하고 화천댐 유입량에 대한 1967~2017년 동안의 변동량을 자연적 요인과 인위적 요인으로 분리하여 제시하였다. 다양한 변동점 탐색기법을 사용한 결과 1999년이 통계적으로 유의한 변동점으로 탐색되었으며, 이를 활용하여 수문학적 민감도 분석을 5가지의 Budyko 함수들을 이용하여 산정한 결과 평균적으로 18.99억 $m^3/y$의 유입량 감소가 임남댐 건설로 인하여 발생된 것을 알 수 있었다. 이와 같은 결과는 기존 연구자들의 화천댐 유입량 감소량에 비해 다소 크게 산정된 결과이며, 이는 2000년대 이후 증가된 강우량 및 화천댐 유입량의 감소가 주된 영향을 미친 결과로 추정된다. 향후 월별, 계절별 단위의 분석이 추가로 연구될 필요가 있으며, 미래의 기후변화 상황을 고려한 예측을 통한 실효성 있는 계획이 수립될 필요가 있을 것으로 판단된다.

Keywords

References

  1. Abdul Aziz, O. I., and Burn, D. H. T. (2006). "Trends and variability in the hydrological regime of the Mackenzie river basin." Journal of Hydrology, Vol. 319, pp. 282-294. https://doi.org/10.1016/j.jhydrol.2005.06.039
  2. Ahn, J., Jung, K., and Lee, G. (2011a). "Problems of water use and estimation of water right in North Han river shared by North and South Korea (I) - Analysis of diversion impacts on down- stream area by Imnam dam." Journal of Korea Water Resources Association, Vol. 44, No. 4, pp. 305-314. (In Korean). https://doi.org/10.3741/JKWRA.2011.44.4.305
  3. Ahn, J., Jung, K., and Lee, G. (2011b). "Problems of water use and estimation of water right in North Han river shared by North and South Korea (II) - Estimation of water right in downstream area." Journal of Korea Water Resources Association, Vol. 44, No. 4, pp. 315-325. (In Korean). https://doi.org/10.3741/JKWRA.2011.44.4.315
  4. Akurut, M., Willems, P., and Niwagaba, C. B. (2014). "Potential impacts of climate change on precipitation over Lake Victoria, East Africa, in the 21st Century." Water, Vol. 6, pp. 2634-2659. https://doi.org/10.3390/w6092634
  5. Arora, V. K. (2002). "The use of the aridity index to assess climate change effect on annual runoff." Journal of Hydrology, Vol. 265, No. 1-4, pp. 164-177. https://doi.org/10.1016/S0022-1694(02)00101-4
  6. Barry, D., and Hartigan J. A. (1992). "Product partition models for change point problems." The Annals of Statistics, Vol. 20, No. 1, pp. 260-279. https://doi.org/10.1214/aos/1176348521
  7. Barry, D., and Hartigan J. A. (1993). "A Bayesian analysis for change point problems." Journal of the American Statistical Association, Vol. 88, No. 421, pp. 309-319. https://doi.org/10.2307/2290726
  8. Budyko, M. L. (1948). Evaporation under natural conditions. Gidrometeorizdat, Leningrad.
  9. Budyko, M. L. (1974). Climate and life. Academic, San Diego, CA.
  10. Burn, D. H. (1994). "Hydrologic effects of climatic change in West Central Canada." Journal of Hydrology, Vol. 160, pp. 53-70. https://doi.org/10.1016/0022-1694(94)90033-7
  11. Carlin, B. P., Gelfand, A. E., and Smith, A. F. M. (1992). "Hierarchical Bayesian analysis of changepoint problems." Journal of the Royal Statistical Society, Vol. 41, No. 2, pp. 389-405.
  12. Douglas, E. B., Vogel, R. M., and Knoll, C. N. (2000). "Trends in floods and low flows in the United States: impact of spatial correlation." Journal of Hydrology, Vol. 240, No. 1-2, pp. 90-105. https://doi.org/10.1016/S0022-1694(00)00336-X
  13. Erdman, C., and Emerson, J. W. (1993). "bcp: An R package for performing a Bayesian analysis of change point problems." Journal of Statistical Software, Vol. 23, No. 3. pp. 1-13. https://doi.org/10.1016/0164-1212(93)90055-3
  14. Fu, B. P. (1981). "On the calculation of the evaporation from land surface." Journal of Atmospheric Sciences, Vol. 5, pp. 23-31.
  15. Gerstengarbe, F. W., and Werner, P. C. (1999). "Estimation of the beginning and end of recurrent events within a climate regime." Climate Research, Vol. 11, pp. 97-107. https://doi.org/10.3354/cr011097
  16. Hirsch, R. M., Alexander, R. B., and Smith, R. A. (1991). "Selection of methods for the detection and estimation of thends in water quality." Water Resources Research, Vol. 27, No. 5, pp. 803-813. https://doi.org/10.1029/91WR00259
  17. Hirsch, R. M., and Slack, J. R. (1984). "A nonparametric trend test for seasonal data with serial dependence." Water Resources Research, Vol. 20, No. 6, pp. 727-732. https://doi.org/10.1029/WR020i006p00727
  18. Hirsch, R. M., Slack, J. R., and Smith, R. A. (1982). "Techniques of trend analysis for monthly water quality data." Water Resources Research, Vol. 18, No. 1, pp. 107-121. https://doi.org/10.1029/WR018i001p00107
  19. Jiang, S., Ren, L., Yong, B., Singh, V. P., Yang, X., and Yuan, F. (2011). "Quantifying the effects of climate variability and human activities on runoff from the Laohahe basin in northern China using three different methods." Hydrological Processes, Vol. 25, No. 16, pp. 2492-2505. https://doi.org/10.1002/hyp.8002
  20. Kahya, E., and Kalayci, S. (2004). "Trend analysis of streamflow in Turkey." Journal of Hydrology, Vol. 289, No. 1-4, pp. 128-144. https://doi.org/10.1016/j.jhydrol.2003.11.006
  21. Kang, H.-Y., Choi, J.-H., Kim, J.-S., and Moon, Y.-I. (2017). "Hydrologic variability in the Sumjin river dam basin according to typhoon genesis pattern." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 233-239. (In Korean). https://doi.org/10.3741/JKWRA.2017.50.4.233
  22. Karpouzos, D. K., Kavalieratou, S., and Babajimopoulos, C. (2010). "Trend analysis of precipitation data in Pieria region (Greece)." European Water, Vol. 30, pp. 31-40.
  23. Kim, H. B., Kim, S. U., and Lee, C.-E. (2017). "Quantitative separation of impacting factors to runoff variation using hydrological model and hydrological sensitivity analysis." Journal of Korea Water Resources Association, Vol. 50, No. 3, pp. 139-153. (In Korean). https://doi.org/10.3741/JKWRA.2017.50.3.139
  24. Kim, N. W., and Lee, J. E. (2009). "The characteristics of runoff for Hwacheon dam watershed." Journal of Korea Water Resources Association, Vol. 42, No. 12, pp. 1069-1077. (In Korean). https://doi.org/10.3741/JKWRA.2009.42.12.1069
  25. Kim, S. U., Lee, Y. S., and Lee, C.-E. (2014). "The application of various non-parametric trend tests to observed and future rainfall data in the Nakdong river basin. Journal of Korea Water Resources Association, Vol. 47, No. 3, pp. 223-235. (In Korean). https://doi.org/10.3741/JKWRA.2014.47.3.223
  26. Koster, R. D., and Suarez, M. J. (1999). "A simple framework for examining the interannual variability of land surface moisture fluxes." Journal of Climate, Vol. 29, No. 24, pp. 1911-1917.
  27. Kottegoda, N. T., and Rosso, R. (1997). Statistics, probability, and reliability for civil and environmental engineers. McGraw-Hill, N.Y.
  28. Lee, C.-E., Kim, S. U., and Lee, Y. S. (2014). "Estimation of the regional future sea level rise using long-trem tidal data in the Korean peninsula." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 753-766. (In Korean). https://doi.org/10.3741/JKWRA.2014.47.9.753
  29. Lee, J. H., Seo, J. W., and Kim, C. J. (2012). "Analysis on trends, periodicities and frequencies of Korean drought using drought indices." Journal of Korea Water Resources Association, Vol. 45, No. 1, pp. 75-89. (In Korean). https://doi.org/10.3741/JKWRA.2012.45.1.75
  30. Li, F., Zhang, G., and Xu, Y. J. (2016). "Assessing climate change impacts on water resources in the Songhua river basin." Water, Vol. 8, W8100420.
  31. Li, Z. L., Xu, Z. X., Li, J. Y., and Li, Z. J. (2008). "Shift trend and step changes for runoff time series in the Shiyang river basin, northwest China." Hydrological Processes, Vol. 22, No. 23, pp. 4639-4646. https://doi.org/10.1002/hyp.7127
  32. Lim, Y. K. (2006). An anlaysis of inflow in Hwacheon dam using SSARR model. Master thesis, Kongju National University (In Korean).
  33. Liu, D., Chen, X., Lian, Y., and Lou, Z. (2010). "Impacts of climate change and human activities on surface runoff in the Dongjiang river basin of China." Hydrological Processes, Vol. 24, No. 11, pp. 1487-1495. https://doi.org/10.1002/hyp.7609
  34. Nash, L. L., and Gleick, P. H. (1991). "Sensitivity of streamflow in the Colorado basin to climatic changes." Journal of Hydrology, Vol. 125, No. 3-4, pp. 221-241. https://doi.org/10.1016/0022-1694(91)90030-L
  35. Novotny, E. V., and Stefan, H. G. (2007). "Streamflow in Minnesota: indicator of climatic change." Journal of Hydrology, Vol. 334, No. 3-4, pp. 319-333. https://doi.org/10.1016/j.jhydrol.2006.10.011
  36. Odongo, V. O., Van der Tol, C., Van Oel, P. R., Meins, F. M., Becht, R., Onyando, J., and Su, Z. (2015). "Characterisation of hydro- climatological trends and variability in the Lake Naivasha basin, Kenya." Hydrological Processes, Vol. 29, No. 15, pp. 3276-3293. https://doi.org/10.1002/hyp.10443
  37. Ol'dekop, E. M. (1911). On evaporation from the surface of river basins. Transmission of Meteorological Observatory University of Tartu 4.
  38. Partal, T., and Kahya, E. (2006). "Trend analysis in Turkish precipitation data." Hydrological Processes, Vol. 20, pp. 2011-2026. https://doi.org/10.1002/hyp.5993
  39. Pettitt, A. N. (1979). "A non-parametric approach to the change-point problem." Journal of the Royal Statistical Society, Vol. 28, No. 2, pp. 126-135.
  40. Pike, J. G. (1964). "The estimation of annual runoff from meteoro- logical data in a tropical climate." Journal of Hydrology, Vol. 2, No. 2, pp. 116-123. https://doi.org/10.1016/0022-1694(64)90022-8
  41. Rouge, C., Ge, Y., and Cai, X. (2013). "Detecting gradual and abrupt changes in hydrological records." Advances in Water Resources, Vol. 53, pp. 33-44. https://doi.org/10.1016/j.advwatres.2012.09.008
  42. Schreiber, P. (1904). "Über die Beziehungen zwischen dem Nieder- schlag und der. Wasserführung der Flüsse in Mitteleuropa." Meteorologische Zeitschrift, Vol. 21, No. 10, pp. 441-452.
  43. Shehadeh, N., and Ananbeh, S. (2013). "The impact of climate change upon winter rainfall." American Journal of Environmental Sciences, Vol. 9, pp. 73-81. https://doi.org/10.3844/ajessp.2013.73.81
  44. Sunwoo, J. H. (1986). The technical consideration by the Imnam dam construction, Journal of Korea Water Resources Association, Vol. 19, No. 4, pp. 294-302. (In Korean).
  45. Van Belle, G., and Hughes, J. P. (1984). "Nonparametric tests for trend in water quality." Water Resources Research, Vol. 20, No. 1, pp. 127-136. https://doi.org/10.1029/WR020i001p00127
  46. Wang, G., Xia, J., and Chen, J. (2009). "Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: a case study of the Chaobai river basin in northern China." Water Resources Research, Vol. 45, No. 7, WR006768.
  47. Xu, Z. X., Takeuchi, K., and Ishidaira, H. (2003). "Monotonic trend and step changes in Japanese precipitation." Journal of Hydrology, Vol. 279, No. 1-4, pp. 144-150. https://doi.org/10.1016/S0022-1694(03)00178-1
  48. Yang, J.-S., and Kim, I.-H. (2013). "Development of drought vulnerability index using delphi method considering climate change and trend analysis in Nakdong river basin." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 6, pp. 2245-2254. (In Korean). https://doi.org/10.12652/Ksce.2013.33.6.2245
  49. Yu, Y.-S., Zou, S., and Whittmore, D. (1993). "Nonparametric trend analysis of water quality data of rivers in Kansas." Journal of Hydrology, Vol. 150, No. 1, pp. 61-80. https://doi.org/10.1016/0022-1694(93)90156-4
  50. Zhang, L., Dawes, W. R., and Walker, G. R. (2001). "Response of mean annual evapotranspiration to vegetation changes at catchment scale." Water Resources Research, Vol. 37, No. 3, pp. 701-708. https://doi.org/10.1029/2000WR900325
  51. Zhang, S., and Lu, X. X. (2009). "Hydrological responses to precipi- tation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China." Catena, Vol. 77, No. 2, pp. 130-142. https://doi.org/10.1016/j.catena.2008.09.001
  52. Zhang, X., Harvey, K. D., Hogg, W. D., and Yuzyk, T. R. (2001). "Trends in Canadian streamflow." Water Resources Research, Vol. 37, No. 4, pp. 987-998. https://doi.org/10.1029/2000WR900357
  53. Zhang, X., Zhang, L,, Zhao, J., Rustomji, P., and Hairsine, P. (2008). "Responses of streamflow to changes in climate and land use/ cover in the Loess Plateau, China." Water Resources Research, Vol. 44, No. 8, WR006711.
  54. Zheng, H., Zhang, L., Zhu, R., Liu, C., Sato, Y., and Fukushima, Y. (2009). "Responses of streamflow to climate and land surface change in the headwaters of Yellow river basin." Water Resources Research, Vol. 45, No. 7, WR006665.