• 제목/요약/키워드: Climate Energy

Search Result 1,587, Processing Time 0.038 seconds

Review on the Recent Membrane Technologies for Pressure Retarded Osmosis (압력지연삼투를 위한 최근 분리막 기술에 관한 총설)

  • Jeon, Sungsu;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.253-261
    • /
    • 2021
  • Solutions to water pollution, global warming, and climate change have been currently discussed. Pressure retarded osmosis (PRO) using a difference in salt concentration between two fluids is proposed to meet the demand for clean water and produce eco-friendly energy. Although PRO has been researched continuously, it has not been commercialized yet due to limitations such as lack of technology and the high price of membranes. Meanwhile, the membrane is one of the most significant parts of the PRO engine and salinity gradient power (SGP) technology. Research continues to technologically develop graphene oxide membranes and nanocomposite membranes used in salinity gradient power generation. Studies on efficient membranes, solvents, and solutes are active to enable high energy efficiency of the osmotic heat engine even at low temperatures of waste. Studies have been conducted on reducing internal concentration polarization and increasing power density by using membranes with balanced permeability and selectivity. In this review, dealing with these studies, we discuss the types of PRO membranes, theoretical modeling of technologies through efficient membranes, and other technologies to develop the process efficiency.

A Study on the Flooding Risk Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 침수 위험성 평가에 관한 연구)

  • Ryu, Seong-Reul
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Purpose: For smooth performance of flood analysis due to heavy rain disasters at energy storage facilities in the Incheon area, field surveys, observational surveys, and pre-established reports and drawings were analyzed. Through the field survey, the characteristics of pipelines and rivers that have not been identified so far were investigated, and based on this, the input data of the SWMM model selected for inundation analysis was constructed. Method: In order to determine the critical duration through the probability flood analysis according to the calculation of the probability rainfall intensity by recurrence period and duration, it is necessary to calculate the probability rainfall intensity for an arbitrary duration by frequency, so the research results of the Ministry of Land, Transport and Maritime Affairs were utilized. Result: Based on this, the probability of rainfall by frequency and duration was extracted, the critical duration was determined through flood analysis, and the rainfall amount suggested in the disaster prevention performance target was applied to enable site safety review. Conclusion: The critical duration of the base was found to be a relatively short duration of 30 minutes due to the very gentle slope of the watershed. In general, if the critical duration is less than 30 minutes, even if flooding occurs, the scale of inundation is not large.

Analysis of CO2 Emission and Effective CO2 Capture Technology in the Hydrogen Production Process (수소생산 공정에서의 CO2 배출처 및 유효포집기술 분석)

  • Kyung Taek Woo;Bonggyu Kim;Youngseok So;Munseok Baek;Seoungsoo Park;Hyejin Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.77-83
    • /
    • 2023
  • Energy consumption is increased by rapid industrialization. As a result, climate change is accelerating due to the increase in CO2 concentration in the atmosphere. Therefore, a shift in the energy paradigm is required. Hydrogen is in the spotlight as a part of that. Currently 95% of hydrogen is fossil fuel-based reforming hydrogen which is accompanied by CO2 emissions. This is called gray hydrogen, if the CO2 is captured and emission of CO2 is reduced, it can be converted into blue hydrogen. There are 3 technologies to capture CO2: absorption, adsorption and membrane technology. In order to select CO2 capture technology, the analysis of the exhaust gas should be carried out. The concentration of CO2 in the flue gas from the hydrogen production process is higher than 20%if water is removed as well as the emission scale is classified as small and medium. So, the application of the membrane technology is more advantageous than the absorption. In addition, if LNG cold energy can be used for low temperature CO2 capture system, the CO2/N2 selectivity of the membrane is higher than room temperature CO2 capture and enabling an efficient CO2 capture process. In this study, we will analyze the flue gas from hydrogen production process and discuss suitable CO2 capture technology for it.

Study on Enhancement of Ammonia Generation for Effective Collision Frequency (유효충돌빈도를 고려한 암모니아 생성 증대기법 연구)

  • Sejin Kim;Yongseok CHoi;Hyunchul Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • Research, such as developing alternative energy in the transportation field, including aviation, is being actively conducted to solve the issue of current climate change. Interest in ammonia fuel as a carbon free energy (CFE) source is increasing due to the ease of liquefaction and transportation and similarity in energy density to that of methanol. However, explosiveness and toxicity of ammonia make it difficult to handle. Therefore, in this study, stable ammonia production was attempted using relatively easy-to-handle urea water solution (UWS). High temperature steam was used to promote the hydrolysis of ammonia. In order to determine the causes for ammonia production below the theoretical equivalent ratio, it was suggested that there were not enough collisions to promote the hydrolysis based on the kinetic theory of gases. The hydrolysis of unreacted isocyanic acid (HNCO) was tested according to the change in water supply. As a result, an increased amount of ammonia produced was confirmed. The increased amount of ammonia produced in a certain section was dependent on the steam temperature and the flow rate of water supplied.

Economic Impacts of Carbon Reduction Policy: Analyzing Emission Permit Price Transmissions Using Macroeconometric Models (탄소감축 정책의 경제적 영향: 거시계량모형에 기반한 배출권가격 변동 효과 분석)

  • Jehoon Lee;Soojin Jo
    • Environmental and Resource Economics Review
    • /
    • v.33 no.1
    • /
    • pp.1-32
    • /
    • 2024
  • The emissions trading system stands as a pivotal climate policy in Korea, incentivizing abatement equivalent to 87% of total emissions (as of 2021). As the system likely has a far-reaching impact, it is crucial to understand how the real economic activity, energy sector, as well as environment would be influenced by its implementation. Employing a macroeconometric model, this paper is the first study analyzing the effects of the Korean emissions trading policy. It interconnects the Korean Standard Industrial Classification (Economy), Energy Balance (Energy), and National Inventory Report (Environment), enhancing its real-world explanatory power. We find that a 50% increase in emission permit price over four years results in a decrease in greenhouse gas emissions (-0.043%) and downward shifts in key macroeconomic variables, including real GDP (-0.058%), private consumption (-0.003%), and investment (-0.301%). The price increase in emission permit is deemed crucial for achieving greenhouse gas reduction targets. To mitigate transition risk associated with price shocks, revenue recycling using auction could ensure the sustainability of the economy. This study confirms the comparative advantage of expanded current transfers expenditure over corporate tax reduction, particularly from an economic growth perspective.

Evaluating Changes in Blue Carbon Storage by Analyzing Tidal Flat Areas Using Multi-Temporal Satellite Data in the Nakdong River Estuary, South Korea (다중시기 위성자료 기반 낙동강 하구 지역 갯벌 면적 분석을 통한 블루카본 저장량 변화 평가)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • Global warming is causing abnormal climates worldwide due to the increase in greenhouse gas concentrations in the atmosphere, negatively affecting ecosystems and humanity. In response, various countries are attempting to reduce greenhouse gas emissions in numerous ways, and interest in blue carbon, carbon absorbed by coastal ecosystems, is increasing. Known to absorb carbon up to 50 times faster than green carbon, blue carbon plays a vital role in responding to climate change. Particularly, the tidal flats of South Korea, one of the world's five largest tidal flats, are valued for their rich biodiversity and exceptional carbon absorption capabilities. While previous studies on blue carbon have focused on the carbon storage and annual carbon absorption rates of tidal flats, there is a lack of research linking tidal flat area changes detected using satellite data to carbon storage. This study applied the direct difference water index to high-resolution satellite data from PlanetScope and RapidEye to analyze the area and changes of the Nakdong River estuary tidal flats over six periods between 2013 and 2023, estimating the carbon storage for each period. The analysis showed that excluding the period in 2013 with a different tidal condition, the tidal flat area changed by up to approximately 5.4% annually, ranging from about 9.38 km2 (in 2022) to about 9.89 km2 (in 2021), with carbon storage estimated between approximately 30,230.0 Mg C and 31,893.7 Mg C.

The Development of the Sustainability Appraisal Indicators for Clean Development Mechanism(CDM) Projects by Multi-Criteria Analysis(MCA) (청정개발체제(CDM)사업의 지속가능성평가 지표 개발 -다 기준분석법(MCA)을 활용하여-)

  • Yang, Chun-Seung;Park, Sung-Hwan;Park, Jung-Gu
    • Journal of Environmental Policy
    • /
    • v.8 no.2
    • /
    • pp.83-118
    • /
    • 2009
  • Clean Development Mechanism(CDM) projects under the Kyoto Protocol have two objectives. One is to assist the Parties included in Annex I in achieving compliance with their quantified emission limitation and reduction commitments in cost-effective ways by allowing them to implement emission reduction projects in Non-Annex I countries and receive CERs, which will offset their reduction commitments. The other is to assist Parties not included in Annex I in achieving sustainable development and technology transfers through investments by Annex I countries. However, in reality, it is said that the former objective is achievable but the latter is not. In this light, this article suggests sustainability appraisal criteria applicable for Korea. Among various methodologies, we used the 'multi-attributes utility theory(MAUT)'; one of the 'multi-criteria analysis (MCA)' methodologies judged to be the most practical and relevant. Based on the guidelines of the MAUT methodology, we identified sustainability criteria that meet the guidelines. We took two tracks, the first to find the preferences of Korean experts, and the other to check foreign cases. In all, 37 preliminary criteria were suggested to Korean experts and each criterion was scored, from between 1 and 3, in terms of relevance, possibility of real improvement, easiness of data collection, and preferences. We combined foreign cases and the results of a survey conducted in Korea and selected 12 core criteria and 10 additional criteria. After that, all the criteria were converted into indicators. The indicators were applied to a CDM project for case study. We chose the "Sihwa Tidal Power Project", which is currently the biggest tidal power plant in the world. Twelve core indicators and 3 additional indicators were applied. In order to weight each indicator, the 'analytical hierarchy process (AHP)' was used. A total of 30 experts were asked to suggest weights and 21 answered. Among them, only 14 respondents were proven to meet the consistency ratio. We analyzed the 14 responses through Expert Choice and the CDM project was scored (+)53.082. In addition, sensitivity analysis was undertaken with the result of (+)44.667 to (+)65.522. As a result of this study, it was proven that this project would contribute to the sustainable development of Korea.

  • PDF

Effect of Breed (Lean or Fat Pigs) and Sex on Performance and Feeding Behaviour of Group Housed Growing Pigs in a Tropical Climate

  • Renaudeau, D.;Giorgi, M.;Silou, F.;Weisbecker, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.593-600
    • /
    • 2006
  • The effects of breed and sex on individual growth performance and feeding behaviour were studied between 45 and 90 kg BW in two replicates of forty group-housed pigs. The first and the second replicates were carried out during the warm season (i.e. between February and April 2003) and during the hot season (i.e. between August and October 2003), respectively. During the warm season, ambient temperature and relative humidity averaged $25.3^{\circ}C$ and 86.0%. The corresponding values for the hot season were $27.9^{\circ}C$ and 83.6%. The pigs were grouped in pens of 10 animals on the basis of breed (Creole or Large White) and sex (gilt or castrated male) and given ad libitum access to a grower diet (9.0 MJ/kg net energy and 158 g/kg crude protein) via feed intake recording equipment (Acema 48). An ear-tag transponder was inserted into each pig and this allowed the time, duration, and size of individual visits to be recorded. The growth performance and feeding pattern were significantly affected by breed, sex, and season. The Creole pigs (CR) had a lower average daily gain (ADG) (642 vs. 861 g/d, p<0.01) and carcass lean content ($LC_{90kg}$) (35.4 vs. 54.5%; p<0.01) and a higher backfat thickness at 90 kg BW ($BT_{90kg}$) (23.4 vs. 10.4 mm; p<0.01) than Large White pigs (LW) whereas the average daily feed intake (ADFI) was not affected by breed (2.34 vs. 2.22 kg/d, respectively for CR and LW pigs; p>0.10). Consequently, the food:gain ratio was higher in CR than in LW (3.65 vs. 2.58; p<0.01). CR had less frequent meals but ate more feed per meal than LW (5.9 vs. 8.8 meals/d and 431 vs. 279 g/meal; p<0.01). The rate of feed intake was lower (27.6 vs. 33.9 g/min; p<0.01) and the ingestion time per day and per meal were higher in CR than in LW (87.1 vs. 69.7 min/d and 15.8 vs. 8.4 min/meal; p<0.01). The ADFI and BT90 kg were higher (2.38 vs. 2.17 kg/d and 18.1 vs. 15.9 mm; p<0.05) and LC90 kg was lower (43.5 vs. 46.4%; p<0.01) in castrated males (CM) than in gilts (G) whereas ADG was not affected by sex (p = 0.12). The difference in lean content between CM and G was greater in CR than in LW. The ADFI and ADG were reduced during the hot season (2.18 vs.2.38 kg/d and 726 vs. 777 g/d, respectively; p<0.05) whereas feed conversion and carcass lean content were not affected by season (p>0.05). Average feeding time per meal and meal size decreased during the hot season (10.9 vs. 13.2 min/meal and 316 vs. 396 g/meal; p<0.01) whereas the rate of feed intake was not affected by season (p = 0.83). On average, 0.69 of total feed intake was consumed during the diurnal period. However, this partition of feed intake was significantly affected by breed, sex, and season. In conclusion, the breed, sex and season significantly affect performance and feeding pattern in growing pigs raised in a tropical climate. Moreover, the results obtained in the present study suggest that differences observed in BW composition between CR and LW are associated with difference in feeding behaviour, in particular, the short-term regulation of feed intake.

Assessment of Ecosystem Productivity and Efficiency using Flux Measurement over Haenam Farmland Site in Korea (HFK) (플럭스 관측 기반의 생태계 생산성과 효율성 평가: 해남 농경지 연구 사례)

  • Indrawati, Yohana Maria;Kim, Joon;Kang, Minseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.57-72
    • /
    • 2018
  • Time series analysis of tower flux measurement can be used to build quantitative evidence for the achievement of climate-smart agriculture (CSA). In this study, we have assessed the first objective of CSA (regarding ecosystem productivity and efficiency) for rice paddy-dominated heterogeneous farmland. A set of quantitative indicators were evaluated by analysing the time series data of carbon, water and energy fluxes over the Haenam farmland site in Korea (HFK) during the rice growing seasons from 2003 to 2015. Four different varieties of rice were cultivated during the study period in chronological order of Dongjin No. 1 (2003-2008), Nampyung (2009), Onnuri (2010-2011), and Saenuri (2012-2015). Overall at HFK, gross primary productivity (GPP) ranged from 800 to $944g\;C\;m^{-2}$, water use efficiency (WUE) ranged from 1.91 to $2.80g\;C\;kg\;H_2O^{-1}$, carbon uptake efficiency (CUE) ranged from 1.06 to 1.34, and light use efficiency (LUE) ranged from 0.99 to $1.55g\;C\;MJ^{-1}$. Among the four rice varieties, Dongjin No. 1-dominated HFK showed the highest productivity with higher WUE and LUE, but comparable CUE. Considering the heterogeneous vegetation cover at HFK, a rule of thumb comparison suggested that the productivity of Dongjin No1-dominated HFK was comparable to those of monoculture rice paddies in Asia, whereas HFK was more efficient in water use and less efficient in carbon uptake. Saenuri-dominated HFK also produced high productivity but with the growing season length longer than Dongjin No.1. Although the latter showed better traits for CSA, farmers cultivate Saenuri because of higher pest resistance (associated with adaptability and resilience). This emphasizes the need for the evaluation of other two objectives of CSA (i.e. system resilience and greenhouse gas mitigation) for complete assessment at HFK, which is currently in progress.

Effect of the Application of Sucrose on Rapid Decrease of Soil Inorganic Nitrogen (Sucrose 처리가 토양 무기태질소의 신속 감소에 미치는 영향)

  • Ku, Hyun-Hwoi;Lim, Woo-Jin;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.424-429
    • /
    • 2010
  • To solve the problems with excessive accumulation of soil inorganic N and resulting saline soils from overuse of nitrogen fertilizer, the effect of sucrose application on decrease of soil inorganic N content and electrical conductivity (EC) was studied. Sucrose treatment greatly reduced ${NH_4}^+$-N content in soil. The amount of reduction was greater as the amount of sucrose treatment was increased. When ${NH_4}^+$-N content was reached the lowest point (about 10 mg $kg^{-1}$or lower), the C/N ratio, which determines the amount of sucrose treatment, was around 10 regardless of initial ${NH_4}^+$-N content. For the rate of ${NH_4}^+$-N reduction 15~36 hours was required to reduce the initial ${NH_4}^+$-N content to half, and 36~69 hours to lower ${NH_4}^+$-N content to the lowest point (about 10 mg $kg^{-1}$or lower). In addition, sucrose treatment greatly lowered ${NO_3}^-$-N content. In case of C/N ratio above 10, initial ${NO_3}^-$-N content of 348 mg $kg^{-1}$ was reduced to the lowest of 14~21 mg $kg^{-1}$. As for the rate of ${NO_3}^-$-N reduction by sucrose treatment, it took 36~60 hours for ${NO_3}^-$-N content to reach the lowest point for C/N ratio of 10 or higher, and it took 3 weeks, comparably longer time, for C/N ratio of 5. Lowering soil EC from sucrose treatment showed the same trend as ${NO_3}^-$-N content. As an important energy and carbon source for humankind, sugar should not be wasted and must be carefully applied to soil. In principle, the best way of preventing salt accumulation in soil is to optimize the fertilizer input. However, when over-fertilization should be dealt with, the sucrose treatment would be a possible and effective counter-measure to reduce overdosed nitrogen sources in soil.