Effect of the Application of Sucrose on Rapid Decrease of Soil Inorganic Nitrogen

Sucrose 처리가 토양 무기태질소의 신속 감소에 미치는 영향

  • Ku, Hyun-Hwoi (Climate Change Research Center, Hankyong National University) ;
  • Lim, Woo-Jin (Climate Change Research Center, Hankyong National University) ;
  • Lee, Sang-Eun (Climate Change Research Center, Hankyong National University)
  • 구현회 (한경대학교 기후변화연구센터) ;
  • 임우진 (한경대학교 기후변화연구센터) ;
  • 이상은 (한경대학교 기후변화연구센터)
  • Received : 2010.08.02
  • Accepted : 2010.08.15
  • Published : 2010.08.31

Abstract

To solve the problems with excessive accumulation of soil inorganic N and resulting saline soils from overuse of nitrogen fertilizer, the effect of sucrose application on decrease of soil inorganic N content and electrical conductivity (EC) was studied. Sucrose treatment greatly reduced ${NH_4}^+$-N content in soil. The amount of reduction was greater as the amount of sucrose treatment was increased. When ${NH_4}^+$-N content was reached the lowest point (about 10 mg $kg^{-1}$or lower), the C/N ratio, which determines the amount of sucrose treatment, was around 10 regardless of initial ${NH_4}^+$-N content. For the rate of ${NH_4}^+$-N reduction 15~36 hours was required to reduce the initial ${NH_4}^+$-N content to half, and 36~69 hours to lower ${NH_4}^+$-N content to the lowest point (about 10 mg $kg^{-1}$or lower). In addition, sucrose treatment greatly lowered ${NO_3}^-$-N content. In case of C/N ratio above 10, initial ${NO_3}^-$-N content of 348 mg $kg^{-1}$ was reduced to the lowest of 14~21 mg $kg^{-1}$. As for the rate of ${NO_3}^-$-N reduction by sucrose treatment, it took 36~60 hours for ${NO_3}^-$-N content to reach the lowest point for C/N ratio of 10 or higher, and it took 3 weeks, comparably longer time, for C/N ratio of 5. Lowering soil EC from sucrose treatment showed the same trend as ${NO_3}^-$-N content. As an important energy and carbon source for humankind, sugar should not be wasted and must be carefully applied to soil. In principle, the best way of preventing salt accumulation in soil is to optimize the fertilizer input. However, when over-fertilization should be dealt with, the sucrose treatment would be a possible and effective counter-measure to reduce overdosed nitrogen sources in soil.

질소 비료 과용에 의한 토양 무기태 질소의 과다 축적과 그에 따른 염류 집적이 심각한 시설원예 토양의 문제점을 해결하기 하여, C/N율이 높은 이분해성 탄수화물의 시용이 토양 무기태 질소 함량과 전기전도도 감소에 미치는 영향을 실내 실험을 통하여 검토하였다. sucrose의 처리는 토양 ${NH_4}^+$-N 함량을 크게 감소시켰는데, 감소량은 sucrose 처리량이 많을수록 컸으며, ${NH_4}^+$-N 함량을 최저점 (약 10 mg $kg^{-1}$ 이하)에 도달하게 할 수 있는 sucrose 처리량은 최초의 ${NH_4}^+$-N 함량에 관계없이 C/N율로 약 10부근이었다. sucrose 처리는 토양 ${NH_4}^+$-N 함량을 매우 빠르게 감소시켰는데, 최초 ${NH_4}^+$-N 함량 50~250 mg $kg^{-1}$을 1/2로 감소시키는데 15~36시간이 걸렸으며, 최저점 (약 10 mg $kg^{-1}$ 이하)으로 감소시키는 데에는 36~69시간이 걸렸다. sucrose 처리는 토양 ${NO_3}^-$-N 함량을 큰 폭으로 감소시켰는데, 감소량은 처리량이 많을수록 컸으며, sucrose 처리량이 C/N율로 10 이상인 경우에는 최초 348 mg $kg^{-1}$ 이었던 ${NO_3}^-$-N 함량이 최저 14~21 mg $kg^{-1}$으로 감소하였다. sucrose 처리는 토양 ${NO_3}^-$-N 함량을 매우 빠르게 감소시켰는데, 토양 ${NO_3}^-$-N 함량을 최저점으로 감소시키는데 걸리는 시간은 sucrose 처리량이 C/N율로 10이상인 경우에는 36~60시간이 걸렸으며, 처리량이 C/N율 5로 적었던 경우에는 3주로서 상대적으로 긴 시간이 걸렸다. sucrose 처리에 의한 토양 EC의 감소는 ${NO_3}^-$-N 함량의 감소와 같은 양상을 보였다. 이 논문의 결과를 응용함에 있어서 명심해야될 사항이 있다. 설탕은 인류에게 에너지와 탄소 원 (原)을 공급하는 매우 중요한 자원이므로 특별한 경우가 아니면 토양에 시용하는 것을 피해야 한다. 토양의 염류집적을 막는 최선의 방법은 시비량을 줄이는 일이며, 염류가 집적된 후에 여러 대응방안을 강구하는 것은 사후약방문 (死後藥方文)에 불과하다.

Keywords

References

  1. Aminota, A., D.S. Kirkwood, and R. Kerouela. 1997. Determination of ammonia in seawater by the indophenol-blue method: Evaluation of the ICES NUTS I/C 5 questionnaire Marine Chemistry. Vol. 56:59-75. https://doi.org/10.1016/S0304-4203(96)00080-1
  2. Bernstein, L. 1975. Effect of salinity on plant growth. Ann Rev. Phytopothology. 13:295-312. https://doi.org/10.1146/annurev.py.13.090175.001455
  3. Burton, W.G. 1982. Post-harvest physiology of food crops Verlay Longman, London.
  4. Coleman, D.C., C.P.P. Reid, and C. Cole. 1983. Biological strategies of nutrient cycling in soil system. Adv. Eco. Res. 13: 1-55. https://doi.org/10.1016/S0065-2504(08)60107-5
  5. Duxbury, J.M., M.S. Smith, and J.W. Doran. 1989. Soil. organic matter as source and a sink of plant nutrients. p 33-68. In. (ed.) Dynamic of soil organic matter in tropical ecosystem University of Hawaii Press. Honolulu.
  6. Hwang, S.W., Y.S. Kim, B.J. Lee, and Y.D. Park. 1993. The effcct of several desalting methods applied to vinyl house soil. Journal of Agricultural Science. 35(1):276-280.
  7. Jemison, John M. Jr. and Richard H. Fox. 1994. Nitrate leaching from nitrogen fertilizer and manured com measured with zerotension panlysimeters. J. Environ. Qual. 23:337-343.
  8. Jeong, B.G., J.W. Choi,E.S. Yun, J.H. Yoon, Y.H. Kim, and G.B. Jung. 1998. Chemical properties of the horticultural soils in the plastic film houses in korea. Korean J. Soil Sci. Fert. Vol. 31:9-15.
  9. Kowalenko, C.G. 1980. Transport and transformation of fertilizer-N in a sandy field plot using tracer technique. Soil Sci. 129:218-221. https://doi.org/10.1097/00010694-198004000-00004
  10. Lee, S.E. and S.K. Lim. 1984. Studies on tip-bum of chinese cabbage by ammonium loxicity. Korean J. Soil Sci. Fert. Vol. 17:389-398.
  11. Paul, E.A. and R. P. Vorony. 1980. Nutrient and energy flows through soil biomass. p. 197-207. In. (ed.) Contemporary microbial ecology. Academic Press, London, UK.
  12. Spalding R.F. and M.E. Exner. 1993. Occurrence of nitrate in groundwater A Review. J. Environ. Qual. 22 :392-402.
  13. Van Aephen, J.G. 1984. Rice in the reclamation of salt affected soil. Ecology and management of problem soils in asia FFTC book.
  14. Yun, H. B., Y. Lee, C.Y. Yu, J.E. Yang, S.M. Lee, J.H. Shin, S,C. Kim, and Y.B. Lee. 2010. Soil nitrogen mineralization influenced by continuous application of livestock manure composts. Korean J. Soil Sci. Fert. Vol. 43:9-15.