Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.4.253

Review on the Recent Membrane Technologies for Pressure Retarded Osmosis  

Jeon, Sungsu (Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.31, no.4, 2021 , pp. 253-261 More about this Journal
Abstract
Solutions to water pollution, global warming, and climate change have been currently discussed. Pressure retarded osmosis (PRO) using a difference in salt concentration between two fluids is proposed to meet the demand for clean water and produce eco-friendly energy. Although PRO has been researched continuously, it has not been commercialized yet due to limitations such as lack of technology and the high price of membranes. Meanwhile, the membrane is one of the most significant parts of the PRO engine and salinity gradient power (SGP) technology. Research continues to technologically develop graphene oxide membranes and nanocomposite membranes used in salinity gradient power generation. Studies on efficient membranes, solvents, and solutes are active to enable high energy efficiency of the osmotic heat engine even at low temperatures of waste. Studies have been conducted on reducing internal concentration polarization and increasing power density by using membranes with balanced permeability and selectivity. In this review, dealing with these studies, we discuss the types of PRO membranes, theoretical modeling of technologies through efficient membranes, and other technologies to develop the process efficiency.
Keywords
pressure retarded osmosis; salinity gradient power; graphene oxide; nanocomposite membranes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. L. McGinnis, J. R. McCutcheon, M. Elimelech, "A novel ammonia-carbon dioxide osmotic heat engine for power generation", J. Membr. Sci., 305, 13 (2007).   DOI
2 N. Ghaffour, S. Soukane, J. G. Lee, Y. Kim, A. Alpatova, "Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review", Appl. Energy, 254, 113698 (2019).   DOI
3 H. K. Lee, H. T. T. Dao, W. Kang, Y. N. Kwon, "Review on Changes in Surface Properties and Performance of Polyamide Membranes when Exposed to Acidic Solutions", J. Membr. Sci., 30, 283 (2020).   DOI
4 X. Tong, X. Wang, S. Liu, H. Gao, R. Hao, Y. Chen, "Low-Grade Waste Heat Recovery via an Osmotic Heat Engine by Using a Freestanding Graphene Oxide Membrane", ACS Omega, 3, 15501 (2018).   DOI
5 X. Tong, X. Wang, S. Liu, H. Gao, C. Xu, J. Crittenden, Y. Chen, "A freestanding graphene oxide membrane for efficiently harvesting salinity gradient power", Carbon, 138, 410 (2018).   DOI
6 C. Chen, D. Liu, L. He, S. Qin, J. Wang, J. M. Razal, N. A. Kotov, W. Lei, "Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting", Joule, 4, 247 (2020).   DOI
7 H. Gong, D. D. Anastasio, K. Wang, J. R. McCutcheon, "Finding better draw solutes for osmotic heat engines: Understanding transport of ions during pressure retarded osmosis", Desalination, 421, 32 (2017).   DOI
8 X. Tong, S. Liu, J. Yan, O. A. Broesicke, Y. Chen, J. Crittenden, "Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration", Appl. Energy, 259, 114192 (2020).   DOI
9 A. O. Sharif, A. A. Merdaw, M. Aryafar, P. Nicoll, "Theoretical and experimental investigations of the potential of osmotic energy for power production", Membranes, 4, 447 (2014).   DOI
10 X. Luo, X. Cao, Y. Mo, K. Xiao, X. Zhang, P. Liang, X. Huang, "Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat", Electrochem. Commun., 19, 25 (2012).   DOI
11 N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, M. Elimelech, "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients", Environ. Sci. Technol., 45, 4360 (2011).   DOI
12 J. Kim, H. J. Park, K. H. Lee, B. Kwon, S. Kwon, J. L. Lim, "Impact Analysis of Water Blending to Reverse Osmosis Desalination Process", J. Membr. Sci., 30, 190 (2020).   DOI
13 M. Qasim, N. A. Darwish, S. Sarp, N. Hilal, "Water desalination by forward (direct) osmosis phenomenon: A comprehensive review", Desalination, 374, 47 (2015).   DOI
14 M. Tawalbeh, A. Al-Othman, N. Abdelwahab, A. H. Alami, A. G. Olabi, "Recent developments in pressure retarded osmosis for desalination and power generation", Renew. Sustain. Energy Rev., 138, 110492 (2021).   DOI
15 A. P. Straub, N. Y. Yip, S. Lin, J. Lee, M. Elimelech, "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes", Nat. Energy, 1, 16090 (2016).   DOI
16 S. Adham, A. Hussain, J. Minier-Matar, A. Janson, R. Sharma, "Membrane applications and opportunities for water management in the oil & gas industry", Desalination, 440, 2 (2018).
17 R. R. Gonzales, A. Abdel-Wahab, S. Adham, D. S. Han, S. Phuntsho, W. Suwaileh, N. Hilal, H. K. Shon, "Salinity gradient energy generation by pressure retarded osmosis: A review", Desalination, 500, 114841 (2021).   DOI
18 B. Anand, R. Shankar, S. Murugavelh, W. Rivera, K. Midhun Prasad, R. Nagarajan, "A review on solar photovoltaic thermal integrated desalination technologies", Renew. Sustain. Energy Rev., 141, 110787 (2021).   DOI
19 A. Yadav, P. K. Labhasetwar, V. K. Shahi, "Membrane distillation using low-grade energy for desalination: A review", J. Environ. Chem. Eng., 9, 105818 (2021).   DOI
20 J. Kim, K. H Lee, J. L. Lim, "Comprehensive Analysis of Major Factors Associated with the Performance of Reverse Osmosis Desalination Plant for Energy-saving", J. Membr. Sci., 29, 314 (2019).   DOI
21 J. Y. Lee, J. W. Rhim, "Identification of Fouling Phenomena and Establishment for Optimized Removal Process of Alginic Acid Sodium Salt Through Capacitive Deionization", J. Membr. Sci., 30, 342 (2020).   DOI
22 N. AlZainati, H. Saleem, A. Altaee, S. J. Zaidi, M. Mohsen, A. Hawari, G.J. Millar, "Pressure retarded osmosis: Advancement, challenges and potential", J. Water Process Eng., 40, 101950 (2021).   DOI
23 N. Bajraktari, C. Helix-Nielsen, H. T. Madsen, "Pressure retarded osmosis from hypersaline sources-A review", Desalination, 413, 65 (2017).   DOI
24 A. Ali, R. A. Tufa, F. Macedonio, E. Curcio, E. Drioli, "Membrane technology in renewable-energy-driven desalination", Renew. Sustain. Energy Rev., 81, 1 (2018).   DOI