• Title/Summary/Keyword: Clearance efficiency

Search Result 193, Processing Time 0.027 seconds

Evaluation of Flowfield and Flow Losses insied Axial Turbomachinery Using Numerical Calculation [Evaluation of Tip Leakage Loss and Reduction of Efficiency by Tip Clearance] (수치계산에 의한 축류터보기계의 유동장과 유동온실의 평가 III [회전차 익말단의 누설손실과 효율저하에 대한 평가])

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.240-247
    • /
    • 1998
  • Leakage vortices formed near blade tip causes an increase of total pressure loss near casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the less distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and aprroximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (III) - Evaluation of Tip Leakage Loss and Reduction of Efficiency near Blade Tip Clearance Region of a Rotor - (축류 회전차 익말단 틈새유동에 대한 수치해석 (III) - 회전차 익말단의 누설손실과 효율저하에 대한 평가 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1113-1120
    • /
    • 1999
  • Leakage vortices fonned near the blade tip cause an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and the of attack on the leakage vortex and overall performance, and the los9 distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss due to the tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency due to the tip leakage flow.

Evaluation of Tip Leakage Loss and Reduction of Efficiency of Axial Turbomachinery Using Numerical Calculation (수치계산에 의한 축류터보기계의 회전차 익말단의 누설손실과 효율저하에 대한 평가)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.73-80
    • /
    • 1999
  • Leakage vortices formed new blade tip causes an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of the tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated by varying the tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the loss distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Tip Clearance Effect on Through-Flow and Performance of a Centrifugal Compressor

  • Eum, Hark-Jin;Kang, Young-Seok;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.979-989
    • /
    • 2004
  • Numerical simulations have been performed to investigate tip clearance effect on through-flow and performance of a centrifugal compressor which has the same configuration of impeller with six different tip clearances. Secondary flow and loss distribution have been surveyed to understand the flow mechanism due to the tip clearance. Tip leakage flow strongly interacts with mainstream flow and considerably changes the secondary flow and the loss distribution inside the impeller passage. A method has been described to quantitatively estimate the tip clearance effect on the performance drop and the efficiency drop. The tip clearance has caused specific work reduction and additional entropy generation. The former, which is called inviscid loss, is independent of any internal loss and the latter, which is called viscous loss, is dependent on every loss in the flow passage. Two components equally affected the performance drop as the tip clearances were small, while the efficiency drop was influenced by the viscous component alone. The additional entropy generation was modeled with all the kinetic energy of the tip leakage flow. Therefore, the present paper can provide how to quantitatively estimate the tip clearance effect on the performance and efficiency.

Numerical Analysis of Tip Clearance Effects in a Micro Radial Inflow Turbine

  • Watanabe, Naoki;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.622-627
    • /
    • 2004
  • There are many difficulties in realizing Ultra-micro gas turbine system. Among them, the effects of tip clearance upon the micro turbine flowfield are discussed in this paper. The flowfield was investigated numerically with the Reynolds-averaged three-dimensional thin-layer Navier-Stokes equations. Calculations were conducted with clearance height from 0% to 10% of the passage height. Leakage mass flow and deterioration of efficiency are proportional to the clearance height for the clearance height larger than 4%. However, in the case of 2% clearance, leakage flow is significantly reduced due to relative motion of the casing and as a result deterioration of efficiency is very small. It is difficult to control tip clearance in micro turbines, but the results of this study indicate that if the clearance height is controlled within a few per-cent of passage height, deterioration of stage performance will be small.

  • PDF

Numerical Study on Tip Clearance Effect on Performance of a Centrifugal Compressor (익단간극이 원심압축기 성능에 미치는 영향에 관한 수치해석적 연구)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.389-397
    • /
    • 2003
  • Effect of tip leakage flow on through flow and performance of a centrifugal compressor impeller was numerically studied using CFX-TASC flow. Seven different tip clearances were used to consider the influence of tip clearance on performance. Secondary flow and loss factor were evaluated to understand the loss mechanism inside the impeller due to tip leakage flow. The calculated results were circumferentially averaged along the passage and at the impeller exit for quantitative discussion. Tip clearance effect on Performance could be decomposed into inviscid and viscous components using one dimensional equation. The inviscid component is related with the specific work reduction and the viscous component is related with the additional entropy generation. Two components affected Performance equally. while efficiency drop was mainly influenced by viscous loss. Performance and efficiency drop due to tip clearance were proportional to the ratio of tip clearance to exit blade height. A simple model suggested in the present study predict performance and efficiency drop quite successfully.

A Study on the Turbine Performance in the steam seal variable clearance packing type of Steam turbine (증기터빈의 가변패킹 형태에 따른 터빈성능 평가에 관한 연구)

  • Kweon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1676-1681
    • /
    • 2004
  • The main reason for applying positive pressure variable clearance packing in fossil power plant is high efficiency and energy saving movement in the government. This study intends to analyze the turbine efficiency through the shaft packing improvement in thermal power plant and makes its comparison to that of the each packing type

  • PDF

Efficiency Analysis on Customs Clearance Service of Korea (한국의 통관서비스 효율성 분석에 관한 연구)

  • Lee, Ki-Woong
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.53
    • /
    • pp.315-336
    • /
    • 2012
  • In year 2011 export volume of South Korea surpassed 500billion USD and overall trade volume has exceeded one trillion USD. South Korea is ranked at 7th in the world by its export volume. Such an expansion of the trade volume leads to growth in customs clearance service demand. However, there are only handfuls of studies on the efficiency of customs clearance service which customs broker provide. If the efficiency in this study is not absolute, it shows relative efficiency to decision making unit. In this research survey was conducted targeting members of Korea Customs Brokers Association. Based on the survey improvement plans to enhance efficiency of customs clearances are as follows. First, rationalize the customs broker fee. Second, setup batch processing system to improve efficiency of the work process. Third, develop new area of task such as FTA and AEO certification. Forth, raise service quality by improving professionalism of customs brokers. Fifth, work efficiency of the office in the capital area will increase. Sixth, when inspecting import export cargo, customs broker should attend at the scene by their choice. Meanwhile, difference analysis on competent customs, type of office, and duration of the business was done but all the aspects were rejected. Such aspects does not influence on its effectiveness.

  • PDF

A Study of the Tip Clearance Effect to the Performance of an Axial-Type Fan (축류형 송풍기의 익단간극이 성능에 미치는 영향에 관한 연구)

  • Cho, Chong-Hyun;Jung, Yang-Beom;Kim, Young-Cheol;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.7-17
    • /
    • 2008
  • Fan performances are obtained with various tip clearance gaps and stagger angles of the rotor. A tested fan is an axial-type fan of which the casing diameter is 806 mm. Two different rotors are applied to this test. One is designed on the basis of the free vortex method along the radial direction and the other is designed using the forced vortex method. The operating conditions are varied to the ultimate off-design point as well as the deign point. Overall efficiency, total pressure and input power are compared with the tip clearance gaps and different stagger angle. The experimental results show that changing of the stagger angle has minor influence to the performance when the same rotor is applied. When the tip clearance gap is less than 5% of the rotor span, the overall efficiency, total pressure loss and input power reduction are varied linearly with the variation of the tip clearance gaps. On the design point, the overall efficiency is decreased to the rate of 2.8-2.9 to the increasing of the tip clearance, but the changing rate of the overall efficiency is alleviated when the fan operates at off-design points. In particular, this rate is more quickly declined on a fan with the rotor designed using the forced vortex method. The result of the total pressure shows that the pressure reduction rate is a 0.08-0.1 according to the tip clearance, and additionally the input power reduction rate is a 0.045-0.065 at design point.

Numerical simulation of tip clearance impact on a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Wei, Jing;Pan, Yipeng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • Numerical simulation based on the Reynolds Averaged Naviere-Stokes (RANS) Computational Fluid Dynamics (CFD) method had been carried out with the commercial code ANSYS CFX. The structured grid and SST $k-{\omega}$ turbulence model had been adopted. The impact of non-condensable gas (NCG) on cavitation performance had been introduced into the Schnerr and Sauer cavitation model. The numerical investigation of cavitating flow of marine propeller E779A was carried out with different advance ratios and cavitation numbers to verify the numerical simulation method. Tip clearance effects on the performance of pumpjet propulsor had been investigated. Results showed that the structure and characteristics of the tip leakage vortex and the efficiency of the propulsor dropped more sharply with the increase of the tip clearance size. Furthermore, the numerical simulation of tip clearance cavitation of pumpjet propulsor had been presented with different rotational speed and tip clearance size. The mechanism of tip clearance cavitation causing a further loss of the efficiency had been studied. The influence of rotational speed and tip clearance size on tip clearance cavitation had been investigated.