• Title/Summary/Keyword: Cleaning robot

Search Result 181, Processing Time 0.032 seconds

A Study on Standardization of Performance Evaluation for Autonomous Cleaning Robot (자율청소로봇 성능평가 표준화에 관한 연구)

  • Ryu Jae-Chang;Hong Ju-Pyo;Rhim Sung-Soo;Lee Soon-Geul;Park Kwang-Ho
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1054-1059
    • /
    • 2005
  • To support the expansion of the autonomous robot market, the establishment of evaluation standards of the robot performance are essential. In this paper, to venture the standardization of the performance evaluation of the autonomous robot, the authors take the autonomous cleaning robot(ACR) as the initial stepping stone. Recently, the ACR has been being developed and marketed actively in many countries including Korea and it believes to be the fore-runner among various types of autonomous robot products. Standards of the performance evaluation for the ACR could be easily modified and applied to other autonomous robots. This paper formulates and suggests a group of standards for the performance evaluation based on a evaluation platform for the ACR. The newly developed performance evaluation platform has been designed to include all the important aspects of living environments in reality. In the platform the performance of the ACR is measured in terms of mobility, cleaning performance, avoidance of obstruction(safety), and operation noise. A few commercially available ACR products are collected and tested in the evaluation platform and compared against the performance evaluation standards formulated.

  • PDF

A Mobile Robot Based on Slip Compensating Algorithm for Cleaning of Stud Holes at Reactor Vessel in NPP

  • Kim, Dong Il;Moon, Young Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • The APR1400 reactor stud holes can be stuck due to high temperatures, high pressure, prolonged engagement, and load changes according to pressure changes in the reactor. Threaded surfaces of a stud hole should be cleaned for the sealing of pressure in reactor vessel by removing any foreign materials which may exist in the stud holes. Human workers can access to the stud hole for the cleaning of stud holes manually, but the radiation exposure of human workers is increased. Robot is an effective way to work in hazardous area. So we introduced robot for the cleaning of stud holes. Localization of mobile robots is generally based on odometry, but with increased mileage, position errors can be accumulated. In order to eliminate cumulative error and to ensure stability of its driving, laser sensors and new control algorithm were utilized. The distance between the robot and the wall was measured by laser sensors, and the control algorithm was implemented so as to travel the desired trajectory by using the measured values from sensors. The performance of driving and hole sensing were verified through field application, and mobile robot was confirmed to be applicable to the APR 1400 NPP.

Water-jet Cleaning Motion of the In-Pipe Robot with Screw Drive Inside the Water Pipes

  • Kang, Hoon;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.894-901
    • /
    • 2012
  • For more efficient use of the high pressure water-jet in rehabilitation of the water pipes, we have studied the water-jet cleaning motion of the in-pipe robot with screw drive. The mathematical models of the water-jet in the straight and the curved pipe (90 degrees elbow), representative features of the water mains, were designed to understand the water-jet motion and simulations have been performed. Furthermore the experiments has been conducted to validate the simulations by using the prototype in-pipe robot in the 3-D pipeline. The simulation results show that the water-jet motion in the straight pipe has a constant water-jet interval, whereas the motion in the curved pipe is changed by its position. By the comparison of the simulation and the experimental results, we have demonstrated that the simulations successfully estimate the water-jet motion inside the water pipes. Therefore in-pipe robot operators can predict a water-jet motion for a target water pipe through the simulation and flexibly make a proper water-jet motion by changing the robot configurations before a cleaning work.