• Title/Summary/Keyword: Cleaning performance evaluation

Search Result 65, Processing Time 0.023 seconds

Development and Performance Evaluation of Hull Blasting Robot for Surface Pre-Preparation for Painting Process (도장전처리 작업을 위한 블라스팅 로봇 시스템 개발 및 성능평가)

  • Lee, JunHo;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.383-389
    • /
    • 2016
  • In this paper, we present the hull blasting machine with vision-based weld bead recognition device for cleaning shipment exterior wall. The purpose of this study is to introduce the mechanism design of the high efficiency hull blasting machine using the vision system to recognize the weld bead. Therefore, we have developed a robot mechanism and drive controller system of the hull blasting robot. And hull blasting characteristics such as the climbing mechanism, vision system, remote controller and CAN have been discussed and compared with the experimental data. The hull blasting robots are able to remove rust or paint at anchor, so the re-docking is unnecessary. Therefore, this can save time and cost of undergoing re-docking process and build more vessels instead. The robot uses sensors to navigate safely around the hull and has a filter system to collect the fouling removed. We have completed a pilot test of the robot and demonstrated the drive control and CAN communication performance.

Evaluation of Hydrophobic Performance and Durability of Concrete Coated with Cellulose Nanofiber Mixed Antifouling Coating Agent (셀룰로오스 나노섬유 혼합 방오코팅제가 도포된 콘크리트의 소수성능과 내구성능 평가)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.1-8
    • /
    • 2023
  • Marine and hydraulic structures are subject to durability damage not only due to the penetration of sea water but also due to the attachment of marine organisms. Therefore, in this study, we tried to develop an antifouling coating agent with self-cleaning function for marine concrete. It was confirmed that the antifouling coating agent mixed with AKD, cellulose nanofibers and BADGE had sufficient antifouling performance at a well hydrophobicity of around 140° in contact angle and an inclination angle of 15°. In the abrasion resistance test of the surface, only a maximum loss of 0.015 g occurred. In the durability test, as a result of the chloride ion permeation test, almost no chloride ion permeation occurred in the variable where the coating agent was applied, and carbonation and freeze-thaw damage also rarely occurred, so it was analyzed that it was effective in securing durability of concrete.

Development of Rolling Type Light-Shelf with Adjustable Reflectivity (반사율 변경이 가능한 롤링타입형 광선반 개발)

  • Kim, Kyungsoo;Shim, Hyungjun;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.57-64
    • /
    • 2016
  • Purpose: Recently, lighting energy consumption in buildings has been gradually increasing and more studies are being carried out in order to solve this problem. Especially, the efficiency of the light-shelf system, which is a natural lighting system, has been recognized as a potential solution in addressing this problem and so various studies regarding the light-shelf system are being conducted. However, if high luminance material is used for the light-shelf system, glaring may occur in certain circumstances even though such material increases efficiency, and there are also difficulties related to maintenance and management in the case of an external light-shelf system. Therefore, the purpose of this study is to suggest modifications in relation to the reflectivity of the light-shelf system and introduce a rolling type light-shelf system with built-in cleaning equipment. In addition, a performance evaluation technique was established to verify its effectiveness. Method: In this study, we reviewed previous studies related to the light-shelf system and its performance. Then a testbed was established to assess the performance of the rolling-type light-shelf system suggested in this study. Also, the performance of the rolling-type light-shelf system suggested in this study was compared and analyzed with that of existent light-shelf systems in order to better verify the performance, and the uniformity ratio of illumination and lighting energy consumption were calculated for this purpose. Result: The results of the performance evaluation are as follows. 1) The performance evaluation result of the light-shelf system on the day of the summer solstice shows that $30^{\circ}$ is appropriate for the angle of light-shelf system, and the depth of the incoming natural light also increases as the angle of the light shelf increases. 2) It is possible to improve the uniformity ratio of illumination by increasing the reflectivity of the light shelf, and the reason for this is the increase in the amount of incoming light entering indoors due to the increased reflectivity of the light shelf. 3) The rolling type light-shelf system suggested in this study enables energy saving in comparison with existent light-shelf systems, and when the external illuminance decreases to 60,000 lx and 40,000 lx during the summer solstice due to factors such as the weather, the suggested light-shelf system can save energy by 12.1% and 5.1% respectively. Thus the light-shelf system proposed in this study is deemed to be effective in reducing energy costs.

The Study on Evaluation Method of Pest Control Robot Requirements for Smart Greenhouse (스마트 온실 방제 로봇의 요구조건을 고려한 평가 방법 연구)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng;Lee, Siyoung;Kim, Gookhwan;Lee, Meonghun;Hong, Young-ki;Kim, Hyunjong;Yu, Byeong-Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.318-325
    • /
    • 2019
  • Recently, research and development on agricultural robots have been on the rise as the interest in smart farming has increased. Robots used in smart greenhouses should be taken into account with the working characteristics and growing environment. This study examined cleaning robots developed through the environmental analysis of smart greenhouses. This study assessed the evaluation method considering the requirements of the pest control robot applicable to the smart greenhouse. The performance and quality assessment criteria were established to conduct tests through the requirements of robots. The required functions and goals of the pest control robot were derived by referring to the robot-related standards. A driving and working ability test was conducted to assess the performance of the robot. The driving test was conducted on the driving performance of the robot and the work capability was tested on the pest control performance. In addition, a durability test was conducted to assess the quality of the robot. The required factors for smart greenhouse robots were derived from the test results. The study results are expected be a standard for an evaluation of a variety of robots for applications to smart greenhouses.

Checklist and Design Recommendations for the Interiors of Korean, Eco-healthy Childcare Facilities (우리나라 영유아 보육시설의 친환경 실내를 위한 체크리스트와 디자인안 제안)

  • Chun, Jin Hie
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.105-114
    • /
    • 2010
  • As children are known to touch and chew everything, green cleaning procedures are an important step in preventing children from ingesting harmful toxins. The objectives of this study are to develop a new, self-evaluation checklist and to suggest design recommendations which comply with easy, adaptable, economical ways to improve the eco-friendly indoor environment of Korean childcare facilities. The information compiled during this study was collected through literature review and internet surveys1) from July, 2009 to February, 2010. The results of this study show that the current Korean childcare accreditation system and practices emphasize clean building interiors, policies for sanitation and cleanliness, and control of humidity and lighting. On the other hand, the information provided by green-building rating systems from GBCC, LEED, and GBTool offers additional and comparative details regarding indoor environment quality and standards regarding the IAQ performance and management plan, ventilation and thermal comfort systems, views from windows, acoustics, and lighting. In conclusion, this document provides an appropriate and easy-to-follow, self-evaluation checklist composed of eight criteria and 51 practical items. This study also provides the design recommendations composed of 27 practical ideas focusing on interior elements. Both the checklist and design recommendations I have suggested can be a post-occupancy tool for evaluating eco-healthy facility standards as well as tips for continuing to maintain eco-healthy childcare facilities.

A Study on the Remanufacturing of Used Machine Tools (노후된 공작기계의 재제조에 관한 연구)

  • Roh, Young-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.403-410
    • /
    • 2020
  • Continuous industrial development has led to a better quality of life for everyone, even further accelerating industrial growth. Industrial development, however, has also caused environmental degradation, which is posing a serious threat to humanity. It has also encouraged the indiscriminate use of limited resources, causing resource depletion. Efficient resource management based on resource circulation is critical to saving resources. Resource circulation methods are as follows: reducing the use of resources in the manufacturing process, recycling used or reprocessed products and reusing used resources without being reprocessed, remanufacturing with end-of-life products with disassembled parts. Furthermore, remanufacturing process including cleaning, inspection, repairing, and reassembling facilitate performance level as well as new typical products. It is noteworthy that the remanufacturing of machine tools can significantly save resources because their structural parts are substantially large in size. Machine tools have served as a foundation for the manufacturing industry, which has driven Korea's industrial development. Nevertheless, a few research has been reported for remanufacturing technology with used machine tools. Relevant research of developing a remanufacturing process chart and method is prerequisite for saving the resource and environments.

Performance and Feasibility Evaluation of Straight-Type Mixing Head in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소 섬유강화 복합소재의 고압 수지이송 성형공정에서 직선형 믹싱헤드의 성능 및 유용성 평가)

  • Han, Beom Jeong;Jeong, Yong Chai;Hwang, Ki Ha;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-165
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) technology has been commercialized for fast production of fiber reinforced composite materials. The high-pressure mixing head was one of the most core component of the HP-RTM process. In this study, a mixing head was systematically designed, manufactured and evaluated. This mixing head was composed of a nozzle, a mixing chamber, a cleaning piston part, and an internal mold release part. In actual, a straight-type structure was newly designed instead of the conventional L-type structure for improving the maximum mixing pressure and mixing ratio precision. The performance of mixing head was showed maximum mixing pressure of 15.22MPa and mixing ratio precision of 0.12%. CFRP molding experiments were successfully obtained a 6~11 laminating carbon sheet using HP-RTM presses and specimen molds.

Evaluation of Chemical Resistance and Cleaning Efficiency Characteristics of Multi bore PSf Hollow Fiber Membrane (Multi-bore PSf 중공사막의 내화학성 및 세척 효율 특성평가)

  • Im, Kwang Seop;Kim, Tae Han;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.138-148
    • /
    • 2020
  • The purpose of this study was to identify the cleaning efficiency of fouled multi-bore hollow fiber membranes after purification of contaminated water. The PSf (polysulfone) based hollow fiber membrane manufactured by Pure & B Tech Co., Ltd. Was used in this study. The antifouling characteristics during the water treatment were studied using bovine serum albumin (BSA) as a model compound and the chemical resistance was evaluated after long-term impregnation in sodium hypochlorite (NaOCl) solution and Citric acid to understand the long term stability of the membranes. Water permeability and mechanical strength of the membranes after prolonged chemical exposure was measured to observe the change in mechanical stability and long term performance of the membrane. moreover, the recovery efficiency was also evaluated after chemical enhanced backwashing of a membrane contaminated with bovine serum albumin. The PSf hollow fiber membrane exhibited excellent chemical resistance, and it was confirmed that the efficiency of sodium hypochlorite was high as a result of chemical enhanced backwashing.

Experimental Study on the Removal of Biofouling from Specimens of Small Ship Constructions Using Water Jet (물 제트를 이용한 소형선박제작 시편의 선체부착생물 제거에 관한 실험적 연구)

  • Seo, Daewon;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1078-1085
    • /
    • 2022
  • Fouling organisms attached to a ship not only greatly increase the resistance of the ship as they grow on the hull but also cause disturbances in local marine ecosystems as they move with the ship. Accordingly, the International Maritime Organization has started discussing the removal of biofouling and evaluation of cleaning performance to prevent the migration of hull-fouling species. In this study, specimens of FRP(Fiber Reinforced Plastic), HDPE(High Density Polyethylene), and CFRP(Carbon Fiber Reinforced Plastic) materials used for small ship construction were cured in Gyeokpo Port (Jeonlakbuk-do) for about 80 days. Then, attached organism removal experiments were performed using a water jet nozzle. The results show that seaweeds, such as laver, were removed when the distance between the nozzle and the specimen was 1.8 cm and the pressure was 100 bar. Furthermore, it was confirmed that the cleaning of barnacles was possible only when the pressure was 200 bar or more.

Properties of Paint Protection Film Containing Poly(urea-urethane)-based Self-Recovery Coating Layer (Poly(urea-urethane) 자기복원 코팅층을 가진 도장 보호필름 물성 연구)

  • Minseok Song
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Recently, the application of paint protection films (PPFs) for automobiles having a self-recovery coating layer has been grown up. In this study, we report the evaluation results on the basic physical properties of a poly(vinyl chloride)- based PPF containing poly(urea-urethane) hybrid self-recovery coating layer. Depending on the main chemical composition and the thickness of poly(urea-urethane)-based coating layer for PPF, the self-recovery performance by an optical microscope and the stain resistance through color difference value are measured. To improve the surface properties and show its easy-cleaning effect against the polluted things, silicone-modified polyacrylate is introduced to the self-recovery coating composition. The contact angle of water on the coated surface is confirmed to show its hydrophobic surface. Finally, accelerated weathering test of paint protection film with poly(urea-urethane) hybrid coating layer is performed to check the possibility of discoloration and deformation due to long-term exposure on harsh condition.