• Title/Summary/Keyword: Cleaning System

Search Result 825, Processing Time 0.03 seconds

Estimation of Solid Sediments Load by Sewer and Land Surface for Maintenance of Combined Sewer Systems (합류식 관거 유지관리를 위한 하수 및 지표면 고형물 부하량 산정)

  • Lee Jae-Soo;Park Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.533-544
    • /
    • 2006
  • The deposition of solids in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and proper pipe management, estimation of solid loads from sewer and surface in a drainage basin is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer solid loads during dry weather in combined sewer systems and for estimating solid loads on surface in a drainage basin developed by the U. S. Environmental Protection Agency were applied and analyzed in Gunja drainage basin in Korea. As result, the estimated solid loads from sewer and surface are 205.8,759kg/yr and 1,321,993kg/yr respectively, and total solid loads is 1,527,752kg/yr. The estimated solid removal from street cleaning, dredging from pipe system and pumping house is 1,486,636kg/yr. Therefore, the applied methods show resonable results. More reliable estimation can be achieved if long-term measurements and adjustment of estimation equations are carried out, and this estimation methods can be used usefully for the management of combined sewer system with reduction of cost and effort.

Fouling Characteristics in Submerged Membrane System of Two-Phase Anaerobic Reactor for Piggery Wastewater Treatment (축산폐수 처리를 위한 막결합형 이상 혐기성 반응조에서 여과막 저항특성)

  • Lee, Sang-Min;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.523-533
    • /
    • 2000
  • A two-phase anaerobic reactor with submerged membrane system was developed for increasing acidogen concentration and methane recovery. The membrane used was mixed esters of cellulose of $0.5{\mu}m$ pore size and $0.8m^2$ of effective surface area. The methanogenic reactor comprised of UASB (Upflow Anaerobic Sludge Blanket) and AF (Anaerobic Filter). COD removal efficiency was 70~80% and the methane content in the biogas increased up to 90% for the submerged membrane system in the anaerobic reactor. As the cake resistance of membrane caused a serious problem, stainless steal prefilters (40, 53, $63{\mu}m$) and air backwashing methods were applied to minimize the cake resistance effectively. Among the tested prefilters. the $63{\mu}m$ prefilter showed the best performance for reduction of cake resistance and a successful long-tern operation. By cleaning with alkali first and acidic solution later. the permeate flux decreased by long term operation was recovered to 89% of that with a new membrane.

  • PDF

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

Fabrication and characterization of $WSi_2$ nanocrystals memory device with $SiO_2$ / $HfO_2$ / $Al_2O_3$ tunnel layer

  • Lee, Hyo-Jun;Lee, Dong-Uk;Kim, Eun-Kyu;Son, Jung-Woo;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.134-134
    • /
    • 2011
  • High-k dielectric materials such as $HfO_2$, $ZrO_2$ and $Al_2O_3$ increase gate capacitance and reduce gate leakage current in MOSFET structures. This behavior suggests that high-k materials will be promise candidates to substitute as a tunnel barrier. Furthermore, stack structure of low-k and high-k tunnel barrier named variable oxide thickness (VARIOT) is more efficient.[1] In this study, we fabricated the $WSi_2$ nanocrystals nonvolatile memory device with $SiO_2/HfO_2/Al_2O_3$ tunnel layer. The $WSi_2$ nano-floating gate capacitors were fabricated on p-type Si (100) wafers. After wafer cleaning, the phosphorus in-situ doped poly-Si layer with a thickness of 100 nm was deposited on isolated active region to confine source and drain. Then, on the gate region defined by using reactive ion etching, the barrier engineered multi-stack tunnel layers of $SiO_2/HfO_2/Al_2O_3$ (2 nm/1 nm/3 nm) were deposited the gate region on Si substrate by using atomic layer deposition. To fabricate $WSi_2$ nanocrystals, the ultrathin $WSi_2$ film with a thickness of 3-4 nm was deposited on the multi-stack tunnel layer by using direct current magnetron sputtering system [2]. Subsequently, the first post annealing process was carried out at $900^{\circ}C$ for 1 min by using rapid thermal annealing system in nitrogen gas ambient. The 15-nm-thick $SiO_2$ control layer was deposited by using ultra-high vacuum magnetron sputtering. For $SiO_2$ layer density, the second post annealing process was carried out at $900^{\circ}C$ for 30 seconds by using rapid thermal annealing system in nitrogen gas ambient. The aluminum gate electrodes of 200-nm thickness were formed by thermal evaporation. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer with HP 41501A pulse generator, an Agillent 81104A 80MHz pulse/pattern generator and an Agillent E5250A low leakage switch mainframe. We will discuss the electrical properties for application next generation non-volatile memory device.

  • PDF

Implementation of a Data Processing Method to Enhance the Quality and Support the What-If Analysis for Traffic History Data (교통이력 데이터의 품질 개선과 What-If 분석을 위한 자료처리 기법의 구현)

  • Lee, Min-Soo;Cheong, Su-Jeong;Choi, Ok-Ju;Meang, Bo-Yeon
    • The KIPS Transactions:PartD
    • /
    • v.17D no.2
    • /
    • pp.87-102
    • /
    • 2010
  • A vast amount of traffic data is produced every day from detection devices but this data includes a considerable amount of errors and missing values. Moreover, this information is periodically deleted before it could be used as important analysis information. Therefore, this paper discusses the implementation of an integrated traffic history database system that continuously stores the traffic data as a multidimensional model and increases the validity and completeness of the data via a flow of processing steps, and provides a what-if analysis function. The implemented system provides various techniques to correct errors and missing data patterns, and a what-if analysis function that enables the analysis of results under various conditions by allowing the flexible definition of various process related environment variables and combinations of the processing flows. Such what-if analysis functions dramatically increase the usability of traffic data but are not provided by other traffic data systems. Experimantal results for cleaning the traffic history data showed that it provides superior performance in terms of validity and completeness.

Life Cycle Environmental Impacts Benefits Analysis of Remanufactured Injector Considering the Avoided Effect (회피효과를 고려한 인젝터 재제조의 전과정 환경영향 효익 분석)

  • Nam Seok Kim;Young Woon Kim;Yong Woo Hwang;Hong-Yoon Kang;Young Ho Kim
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.94-104
    • /
    • 2024
  • Remanufacturing re-commercializes a used product to achieve an equal or higher performance level than the original product by disassembling, cleaning, inspecting, repairing, reconditioning, and reassembling the used product. The remanufacturing industry is a key industry necessary to realize carbon neutrality by 2050. This study uses life cycle assessment to analyze the resource reduction and greenhouse gas reduction effects with and without considering the avoided effect for an injector, which is an automobile part that is actively being remanufactured. The results of this study showed that the resource reduction effect and greenhouse gas reduction effect induced by injector remanufacturing were reduced by 95.30% and 93.88%, respectively, based on one unit without considering the avoided effect. However, when considering the avoided effect, which in this case is the environmental impact of not disposing of the used injector and not having to use natural resources to manufacture a new injector because the used injector was reused during remanufacturing, the resource reduction effect and greenhouse gas reduction effect were 190.91% and 188.33%, respectively. The results of this study are expected to be used in the future to evaluate the amount of environmental impact reduction while considering the avoided effect during remanufacturing and to help develop research methodology for remanufacturing.

Improvement of existing drainage system for leakage treatment in exiting underground structures (운영중인 지하구조물의 누수처리를 위한 유도배수공법의 개선)

  • Kim, Dong-Gyou;Yim, Min-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.669-683
    • /
    • 2017
  • The objective of this study is to propose a modification of the previously proposed drainage system for catching the partial leakage of underground concrete structures. Two techniques were proposed for applying the drainage system only to the leaking parts. One was for conveying leaking groundwater to the collection point in the drainage system and the other was for conveying the collected groundwater to the primary drainage system of the underground concrete structure. Four waterproofing materials for conveying leaking groundwater to the catchment point of the drainage system, Durkflex made of porous rubber material, KE-45 silicone adhesive with super strong adhesion, Hotty-gel made of polymeric materials and general silicone adhesive were evaluated for waterproofing performance. Hotty-gel only showed perfect waterproof performance and the other three waterproof materials leaked. The modified drainage system with Hotty-gel and drainage pipe with fixed saddle to convey the leaking groundwater from the catchment point to the primary drainage system were tested on the concrete retaining wall. The waterproof performance and the drainage performance were evaluated by injecting 1,000 ml of water in the back of the modified drainage system at the 7-day, 14-day, 21-day, 28-day, 2-month and 3-month. There was no problem in waterproof performance and drainage performance of the modified drainage system during 3 months. In order to evaluate the construction period and construction cost of the modified drainage system, it was compared with the existing leaching repair method in surface cleaning stage, leakage treatment stage, and protective barrier stage. Total construction period and construction cost were compared in considering the contents of work, repair material, construction equipment, working time, and total number of workers. As a result of comparing and analyzing in each construction stage, it was concluded that the modified drainage system could save construction period and construction cost compared to the existing leaching repair method.

Development Status of BTL (Biomass to Liquid) Technology (BTL(Biomass to Liquid) 기술 현황)

  • Chae, Ho-Jeong;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-92
    • /
    • 2007
  • In view of stringent environment regulations to control the emission of green house gases and also depleting fossil fuel reserves, it is high quality desirable to develop alternative technologies to produce high quality fuels. To this end Biomass to Liquid (BTL) technology has received much attention in recent years. BTL process generally consists of gasification of biomass to produce bio-syngas, cleaning and control of $H_{2}/CO$ mole ratio of bio-syngas and Fischer-Tropsch synthesis & upgrading systems. Choren, Germany has first developed the commercial BTL process using unique gasification system i.e., Carbo-V. A new technology to remove tars and BTX has been developed by ECN in Netherlands employing a gasification system combined with OLGA technology. Several other countries including USA and Japan are showing great interest in BTL technology. Thus in view of our national energy security and also the environmental regulations, it is essential to develop alternative technologies like BTL in order to meet the increasing demand of energy though our insufficient biomass resources. In this paper we present an overview and development status of BTL-diesel technology.

The Analysis of PM10 Concentration and Emission Contribution in the Major Cities of Korea (한반도 주요 대도시의 PM10 농도 특성 및 배출량과의 상관성 분석)

  • Kang, Minsung;Kim, Yoo-Keun;Kim, Taehee;Kang, Yoon-Hee;Jeong, Ju-Hee
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1065-1076
    • /
    • 2016
  • This study analyzes the $PM_{10}$ characteristics (particulate matter with aerodynamic diameter less than $10{\mu}m$), concentration, and emissions in eight large South Korean cities (Seoul, Incheon, Daejeon, Daegu, Gwangju, Ulsan, Busan, Jeju). The annual median of $PM_{10}$ concentration showed a decline of $0.02{\sim}1.97{\mu}g/m^3$ in the regions, except for Incheon, which recorded an annual $0.02{\mu}g/m^3$ increase. The monthly distribution levels were high in spring, winter, fall, and the summer, but were lower in summer for all regions except for Ulsan. These differences are thought to be due to the dust in spring and the cleaning effect of precipitation in summer. The variation in concentrations during the day (diurnal variation) showed that $PM_{10}$ levels were very high during the rush hour and that this was most extreme in the cities (10.00 and 18.00-21.00). The total annual $PM_{10}$ emissions analysis suggested that there had been a general decrease, except for Jeju. On-road mobile (OM) sources, which contributed a large proportion of the particulates in most regions, decreased, but fugitive dust (FD) sources increased in the remaining regions, except for Daegu. The correlation analysis between $PM_{10}$ concentrations and emissions showed that FD could be used as a valid, positive predictor of $PM_{10}$ emissions in Seoul (74.5% (p<0.05)), Dajeon (47.2% (p<0.05)), and Busan (59.1% (p<0.01)). Furthermore, industrial combustion (IC) was also a significant predictor in Incheon (61.7% (p<0.01)), and on-road mobile (OC) sources were a valid predictor in Daegu (24.8% (p<0.05)).

Microbiological Hazard Analysis for HACCP System Application to fermented milk (발효유류의 HACCP 시스템 적용을 위한 미생물학적 위해 분석)

  • Park, Seong-Bin;Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.438-444
    • /
    • 2015
  • The aim of this research was to apply a HACCP system (Hazard Analysis Critical Control Point) to fermented milk. The main ingredients of fermented milk, work facilities and workers were obtained from a company named YD, which is located in Seobuk-gu, Cheonan-si between November 5 2013 to April 13, 2014. A manufacturing process chart was prepared by referring to the manufacturing process of fermented milk manufacturers in common. The manufacturing process chart was made with raw materials; Raw milk, High Fructose Corn Syrup, Oligosaccharides, Lactic Acid bacteria and Subsidiary ingredients, Warehousing of packaging materials, Storage, Input, Preheating, Mixing, Homogeneity, Sterilization, Precooling, Culture, Filtration, In packaging, Out packaging, Storage, and Consignment, as listed Table 1. The results of the microbiological hazard analysis on the raw materials was safe after sterilization($90^{\circ}C{\pm}5^{\circ}C$, $35{\pm}3min.$) On the other hand,a microorganism test of an environment and workers suggested that the microbiological hazard should be reduced through systematic cleaning and disinfection accompanied by improved personal hygiene based on hygienic education on workers and the management of microorganisms in air.