• Title/Summary/Keyword: Clean rice

Search Result 87, Processing Time 0.023 seconds

Method Development and Validation for Analysis of Isopyrazam Residues in Agricultural Products (농산물 중 살균제 Isopyrazam의 개별 잔류분석법 확립)

  • Kim, Ji-Yoon;Kim, Ja-Young;Ham, Hun-Ju;Do, Jung-Ah;Oh, Jae-Ho;Lee, Young-Deuk;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.84-93
    • /
    • 2013
  • Validated analytical methods for isopyrazam are meager or lacking. In the present study, a single residual analytical method was developed for isopyrazam in selected commodities. Isopyrazam was analyzed in brown rice, soybean, green pepper, mandarin, cucumber, and Korean melon. We tried different solvents and methods through extraction, partition and purification steps to obtain best analytical results. For isopyrazam samples were extracted with acetonitrile, concentrated and partitioned with n-hexane, clean-up using florisil with n-hexane/ethylacetate (70/30) and analyzed with HPLC/UVD. The limit of quantitation (LOQ) for isopyrazam was 1.0 ng (S/N > 10) and method LOQ (MLOQ) was 0.04 mg $kg^{-1}$. Recovery ranged through 81.0~105.3% (syn-isomer) and 80.8~105.6% (anti-isomer) at fortification level of 0.04 (MLOQ), 0.4 (10 ${\times}$ MLOQ), and 2.0 (50 ${\times}$ MLOQ). The coefficient of variation (CV) for isopyrazam was less than 10% regardless of sample types. These results were further confirmed with LC/MS, respectively. The proposed method is highly reproducible and sensitive and is suitable for routine analysis.

Establishment of Analytical Method for Pencycuron in Representative Agricultural Commodities by High-Performance Liquid Chromatography (대표 농산물 중 살균제 Pencycuron의 HPLC 정밀 잔류분석법 개발)

  • Lee, Hyeri;Choi, Hoon;Kim, Byung-Joon;Kim, Eunhye;Kim, Su-Hee;Lee, Jin-Beom;Lee, Young Deuk;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.75-83
    • /
    • 2017
  • The single residue analytical method was developed for determining fungicide pencycuron residues in various agricultural commodities with high-performance liquid chromatography (HPLC). Pencycuron residue was extracted with acetone from representative crops such as Korean cabbage, apple, brown rice and green pepper. After ethyl acetate/n-hexane partition and subsequent clean-up with silica gel chromatography, pencycuron residue was quantified by reversed phase HPLC with UV detection at 240 nm. The suspected residue of pencycuron was confirmed using selected-ion monitoring (SIM) LC/mass spectrometry (MS). Instrumental limit of quantitation (ILOQ) and method LOQ (MLOQ) were set at 2 ng and 0.02 mg/kg, respectively. Overall recoveries of pencycuron from different crop samples fortified at three levels (MLOQ, 10MLOQ, 100MLOQ) were 72~108%. This proposed method could be useful as official analytical method for quantification of pencycuron residues in agricultural commodities.

Analytical Method of Bentazone Residue in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 bentazone의 분석법 확립)

  • Kim, Young-Hak;Lee, Su-Jin;Song, Lee-Seul;Hwang, Young-Sun;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.149-159
    • /
    • 2011
  • Bentazone is benzothiadiazole group herbicide, and used to foliage treatment. This herbicide have already been widely used for cereals and vegetables planting in worldwide. This experiment was conducted to establish a determination method for bentazone residue in crops using HPLC-UVD/MS. Bentazone residue was extracted with acetone (adjusted pH 1 with phosphoric acid) from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover bentazone from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The bentazone was quantitated by HPLC with UVD, using a YMC ODS AM 303 ($4.6{\times}250$ mm) column. The crops were fortified with bentazone at 3 levels per crop. Mean recovery ratio were ranged from 82.0% for a 0.2 mg/kg in apple to 97.9% for a 0.02 mg/kg in Chinese cabbage. The coefficients of variation were ranged from 0.5% for a 0.02 mg/kg in soybean to 9.7% for a 0.02 mg/kg in Chinese cabbage. Quantitative limit of bentazone was 0.02 mg/kg in representative five crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of bentazone in agricultural commodities.

Development and validation of analytical methods for pyrifluquinazon residues determination on agricultural commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 pyrifluquinazon 잔류시험법 개발 및 검증)

  • Do, Jung-Ah;Kwon, Ji-Eun;Kim, Mi-Ra;Lee, Eun-Mi;Kuk, Ju-Hee;Cho, Yoon-Jae;Chang, Moon-Ik;Kwon, Kisung;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.174-181
    • /
    • 2013
  • Pyrifluquinazon is classified with a quinazoline insecticide that regulates food intake by controling the feeding behavior acting on the endocrine or nervous system of pests such as aphids and white fly. To keep safety on pyrifluquinazon residues in agricultural commodities a simple, accurate and rapid analytical method was developed and validated using high performance liquid chromatograph (HPLC-UVD). The pyrifluquinazon residues acidified with 1% formic acid in samples were extracted with acetonitrile and partitioned with hexane subsequently to dichloromethane then purified with silica solid phase extraction (SPE) cartridge. The purified samples were detected using HPLC-UVD. The method was validated using apple and pear spiked with pyrifluquinazon at 0.02, 0.05 and 0.1 mg/kg and hulled rice, pepper, soybean at 0.05 and 0.1 mg/kg. Average recoveries were 70.5~107.9% with relative standard deviation less than 10%. The result of recoveries and overall coefficient of variation of a laboratory results in Gwangju regional FDA and Daejeon regional FDA was followed with Codex guideline (CODEX CAC/GL 40). This method is appropriated at pyrifluquinazon residues determination and will be used as official method of analysis.

Gas Chromatographic Method for Multiresidue Analysis of Unregistered Pesticides in Imported Agricultural Commodities (가스 크로마토그래피를 이용한 수입농산물 중 국내 미등록 농약의 다성분 동시분석법 적용)

  • Lee, Ji-Won;Kang, Jeong-Kyun;Kwon, Hyeyoung;Ro, Jin-Ho;Jin, Yong-Duk;Lee, Je Bong;Hong, Su-Myeoung;Kim, Teak-Kyum;Cho, Nam-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.161-173
    • /
    • 2015
  • The multiresidue method 4.1.2.2 in Korea Food Code was extended for the analysis of 24 unregistered pesticide residues. The method includes acetonitrile extraction, liquid-liquid partition, Florisil SPE clean-up and GC analysis. The limits of quantification (LOQ) range of the method was 0.02~0.05 mg/kg for orange, brown rice and banana. The linearity for targeted pesticides were $R^2$ > 0.99 at the level ranged from 0.05 to 5 mg/L. Recovery test was performed at two concentration levels of LOQ and 4~10 times of LOQ. Recoveries and relative standard deviations (RSDs) of target pesticides were acceptable, showing 70~120% range and less than 20%, respectively, except for ethiprole, picloram and sulcotrion. This method is effectively applicable to routine analysis of target pesticides in orange, brown rice and banana.

Development of Analytical Method for Fenoxycarb, Pyriproxyfen and Methoprene Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 fenoxycarb, pyriproxyfen 및 methoprene의 분석법 확립)

  • Lee, Su-Jin;Kim, Young-Hak;Song, Lee-Seul;Hwang, Yong-Sun;Lim, Jung-Dae;Sohn, Eun-Hwa;Im, Moo-Hyeog;Do, Jung-Ah;Oh, Jae-Ho;Kwon, Ki-Sung;Lee, Joong-Keun;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.254-268
    • /
    • 2011
  • Fenoxycarb, pyriproxyfen and methoprene are juvenile hormone mimic insecticide. These insecticides have been widely used for mosquito, fly, scale insects, and Lepidoptera. The purpose of this study was to develop a simultaneous determination procedure of fenoxycarb, pyriproxyfen and methoprene residues in crops using HPLC-UVD/MS. These insecticide residues were extracted with acetone from representative samples of four raw products which comprised brown rice, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and then n-hexane/dichloromethane partition was followed to recover these insecticides from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The analytes were quantitated by HPLC-UVD/MS, using a $C_{18}$ column. The crops were fortified with each insecticide at 3 levels per crop. Mean recovery ratios were ranged from 80.0 to 104.3% in four representative agricultural commodities. The coefficients of variation were less than 4.8%. Quantitative limit of fenoxycarb, pyriproxyfen, and methoprene was 0.04 mg/kg in crop samples. A HPLC-UVD/MS with selected-ion monitoring was also provided to confirm the suspected residues. The proposed simultaneous analysis method was reproducible and sensitive enough to determine the residues of fenoxycarb, pyriproxyfen and methoprene in the agricultural commodities.

A Study on the Utilization and Satisfaction of Convenience Store Lunchbox by Food-Related Lifestyle: On the Adults in their 20s and older in Seoul, Gyeonggi and Chungcheong Provinces (식생활 라이프 스타일에 따른 편의점도시락 이용 현황과 만족도에 관한 연구: 서울, 경기 및 충청지역 성인을 대상으로)

  • Kim, Hyun-Jung;Lee, Sim-Yeol
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.1
    • /
    • pp.35-52
    • /
    • 2023
  • This study investigated the utilization and satisfaction of lunchboxes according to food-related lifestyle. A sample of 819 adults who regularly purchased lunchboxes were studied. This study can provide basic data for effective menu development. The participants of the study were classified into 4 groups: a 'taste-seeking group', an 'economy-seeking group', 'a convenience-seeking group', and a 'health-seeking group'. The purchase price of lunchboxes was in the range of 3,500 to 4,000 won. The 'health-seeking group' was shown to spend the highest amount on lunchboxes, over 5,100 won. Information about lunchboxes was obtained primarily through convenience stores followed by Internet SNS (p<0.05). Most participants considered nutritional value when purchasing a lunchbox (p<0.001), of which protein, caloric, and sodium content were perceived as important. Moreover, lunchboxes with clean and hygienic aesthetics were preferred amongst the 'health-seeking group' (p<0.01). The 'economy-seeking group' had a higher satisfaction linked with taste (3.66) and quantity (3.60, p<0.001). Furthermore, in terms of the satisfaction with a menu variety the 'health-seeking group' showed the highest satisfaction with a score of 3.76, while the 'convenience-seeking group' ranked the lowest satisfaction with a score of 3.46 (p<0.05). All groups were satisfied with the convenience for purchasing lunchbox (p<0.001). Additionally, most participants preferred white rice (p<0.001) and meat (p<0.01) with cooked by fried and grilled. Lastly, in the content of the lunchbox use in the future, most participants indicated the intent for continuous use (p<0.01) and recommendation to others with the reason for the low price (19.2%) in the 'economy-seeking group', fresh ingredients (16.2%) in the 'convenience-seeking group', and nutritive (17.3%) in the 'health-seeking group', as well as for the convenience of purchase in the overall groups. Taken together, 'taste' and 'convenience' were the most important factors for all groups, while 'nutrition of food' and 'addition of condiments' scored relatively low on the satisfaction in all groups. Therefore, we recommend for the growth of the convenience store lunchbox market, that it is necessary to improve the quality of the lunchbox by developing various menus based on lifestyle group and fortifying nutrition.