• 제목/요약/키워드: Clean hydrogen

검색결과 370건 처리시간 0.018초

수소/메탄 혼합 기체로부터 수소 분리를 위한 두 탑 PSA 실험과 전산 모사 (Experiment and Simulation of 2-bed PSA for Hydrogen Separation from H2/CH4 Gas Mixture)

  • 남기문;정병만;강석현;이창하;이병권;최대기
    • Korean Chemical Engineering Research
    • /
    • 제43권2호
    • /
    • pp.249-258
    • /
    • 2005
  • 활성탄을 흡착제로 하여 2탑 6단계의 PSA(압력 순환식 흡착) 공정을 통하여 수소/메탄(부피비로 60%/40%)의 이성분 혼합기체에서 수소를 분리하는 연구를 수행하였다. PSA 공정에서 순도 및 회수율에 영향을 미치는 흡착압력, 공급 가스 유량, P/F 비를 변수로 하여 실험과 전산모사를 수행하였다. 본 공정에서 정상 상태는 15 cycle 이후에 도달하는 것을 알 수 있었다. P/F 비와 압력이 증가하고 공급 유량이 감소할 때 수소의 순도가 증가하였고, 반면에 회수율이 감소하는 것을 알 수 있었다. PSA 공정 전산 모사와 실험을 토대로 순도와 회수율이 최대일 때 최적의 PSA 운전 조건을 정하였다. 최적의 운전 조건은 공급가스의 유량이 22 LPM이고, 흡착 압력이 11 atm이며, P/F 비는 0.10으로 나타났고, 그 결과 수소의 회수율은 75% 이상 얻어졌으며, 순도는 99% 이상의 수소를 얻을 수 있었다. 본 연구에서는 비등온 비단열 상태를 고려하였으며, LDF(linear driving force) 모델과 LRC(loading ratio correlation) 등온식을 고려하여 실험과 예상치를 비교하였다.

심층 신경망 기법을 이용한 고체 산화물 연료전지 스택의 성능 예측 모델 (Performance Prediction Model of Solid Oxide Fuel Cell Stack Using Deep Neural Network Technique)

  • 이재윤;이스라엘 또레스 삐네다;잡 반 티엔;이동근;김영상;안국영;이영덕
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.436-443
    • /
    • 2020
  • The performance prediction model of a solid oxide fuel cell stack has been developed using deep neural network technique, one of the machine learning methods. The machine learning has been received much interest in various fields, including energy system mo- deling. Using machine learning technique can save time and cost requried in developing an energy system model being compared to the conventional method, that is a combination of a mathematical modeling and an experimental validation. Results reveal that the mean average percent error, root mean square error, and coefficient of determination (R2) range 1.7515, 0.1342, 0.8597, repectively, in maximum. To improve the predictability of the model, the pre-processing is effective and interpolative machine learning and application is more accurate than the extrapolative cases.

성능 향상을 위한 2 Vane 펌프 임펠러 및 벌류트 설계 최적화 (Design Optimization of 2 Vane Pump Impeller and Volute for Performance Improvement)

  • 김성;마상범;최영석;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.395-403
    • /
    • 2020
  • In this paper, the performance characteristics of the impeller and volute in the 2 vane pump were investigated using response surface method (RSM) with commercial computation fluid dynamics (CFD) code. Design variables were defined with the impeller blade angle and volute area distribution. The objective functions were defined as the total head, total efficiency and solid material size of the 2 vane pump. The design optimization of the design variables was determined using the RSM. The numerical results for the reference and optimum models were compared and discussed in this work.

2 Vane 펌프 임펠러의 성능 개선에 관한 수치해석적 연구 (A Numerical Study on the Improvement of Performance for the 2 Vane Pump Impeller)

  • 김성;마상범;최영석;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.293-301
    • /
    • 2020
  • This paper describes a numerical study on the improvement of performance of the 2 vane pump impellers. The design of these impellers was optimized using a commercial computation fluid dynamics code and design of experiments. Geometric design variables were defined by the impeller blade angle distribution. The objective functions were defined as the total head, total efficiency and solid material size of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the total head, total efficiency and solid material size, according to the impeller blade angle distribution, is discussed by analyzing the 2k factorial design results.

반도체 칩 테스트용 챔버 형상에 따른 유동 균일성에 대한 수치적 연구 (A Numerical Study on the Flow Uniformity according to Chamber Shapes Used for Test of the Semi-Conductor Chip)

  • 이대규;마상범;김성;김정열;강채동;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.480-488
    • /
    • 2020
  • This study was conducted to improve the flow uniformity inside the chip tester through changing the flow path formation according to the inlet and outlet position of chamber. The internal flow and velocity distributions of the modified chamber models (Cases 1-3) were compared with the reference chamber model through three-dimensional Reynolds-averaged Navier-Stokes equations with k-ε turbulence model. The modified chamber models showed the superior flow uniformity characteristics compared to the reference chamber model. To investigate the flow uniformity in the chip tester, the standard deviation of the velocity was defined and compared. Through the internal flow analysis and assesment of the standard deviation, Case 2 among the test cases including the reference model showed the best flow uniformity generally.

히트펌프를 이용한 PEMFC 기반 열병합 발전 시스템 (PEMFC Based Cogeneration System Using Heat Pump)

  • 뚜안앵;김영상;이동근;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.324-330
    • /
    • 2021
  • In recent years, polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system has received more and more attention from energy researchers because beside electricity, the system also meets the residential thermal demand. However, the low-quality heat exited from PEMFC should be increased temperature before direct use or storage. This study proposes a method to utilize the heat exhausted from a 10 kW PEMFC by coupling a heat pump. Two different configuration using heat pump and a reference layout with heater are analyzed in term of thermal and total efficiency. The system coefficient of performance (COP) increases from 0.87 in layout with heaters to 1.26 and 1.29 in configuration with heat pump and cascade heat pump, respectively. Lastly, based on system performance result, another study in economics point of view is proposed.

딤플 패턴 최적화를 통한 고체산화물 연료전지 분리판의 흐름 균일도 향상 (Enhancing Flow Uniformity of Gas Separator for Solid Oxide Fuel Cells by Optimizing Dimple Patterns)

  • 쿠엔;이동근;안국영;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.331-339
    • /
    • 2021
  • This study presents a novel way to enhance uniformity of the gas flow inside the solid oxide fuel cell (SOFC), which is critically important to fuel cell performance, by using dimples. A pattern of dimple, which works as a flow distributor/collector, is designed at the inlet and outlet section of a straight channel gas separator. Size of the dimples and the gap between them were changed to optimize the flow uniformity, and any change in size or gap is considered as one design. The results show that some dimple patterns significantly enhance the uniformity compared to baseline, about 4%, while the others slightly reduce it, about 1%. Besides, the dimple pattern also affects to the pressure drop in the flow channel, however the pressure drop in all cases are negligible (less than 26.4 Pa).

알라네이트 계 수소 저장 물질의 수소 방출 특성 (Hydrogen Evolution Properties of Alanate-based Hydrogen Storage Materials)

  • 정헌도
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.361-368
    • /
    • 2017
  • Alanate-based materials, which were known to have high hydrogen storage capacity, were synthesized by mechanochemically metathesis reaction of metal chloride and sodium alanate without solvent. XRD patterns of synthesized materials showed that metathesis reaction of cations between metal chloride and sodium alanate was progressed favorably without any solvent. Magnesium alanate showed that 3.2 wt.% of hydrogen was evolved by the thermal decomposition. The addition of a small amount of Ti to the magnesium alanate greatly reduced hydrogen evolution temperature. Also, Ti doped magnesium alanate had a good regeneration property. Both the calcium and lithium-magnesium alanate showed the lower starting temperature of the two step hydrogen evolution and fast kinetics for the hydrogen evolution.

물분해 수소제조를 위한 SI cycle에서의 EMIm[$EtSO_4$]를 이용한 $SO_2/O_2$ 분리공정 ($SO_2/O_2$ Separation Process with EMIm[$EtSO_4$] in SI Cycle for the Hydrogen Production by Water Splitting)

  • 이기용;김홍곤;정광덕;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.13-20
    • /
    • 2011
  • $SO_2$ has been absorbed and separated selectively by an ionic liquid from $SO_2/O_2$ mixture decomposed from sulfuric acid during the thermochemical SI cycle for the water splitting. In order to design and operate high pressure $SO_2/O_2$ separation system, the solubility of $SO_2$ in [EMIm]$EtSO_4$ (1-ethyl-3-methylimidazolium ethylsulfate) has been measured by Magnetic Suspension Balance at high pressure and temperature. Based on the measured solubility, a pressurized separation system was set up and operated. 194 L/h of $SO_2$($SO_2:O_2$=0.65:1) has been separated with 99.85% of $O_2$ at the vent of absorption tower, which is 22.7% of the theoretically ideal capacity of the system. This discrepancy results from the reduced contact between the gaseous $SO_2$ and the ionic liquid. Increased $SO_2$ supply, scale-up of the absorption column, and a faster ionic liquid circulation speed were suggested to improve the separation capacity.

석탄을 원료로 한 수소 제조 공정 (Hydrogen Production Technologies from Coal)

  • 김종원;심규성
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.193-206
    • /
    • 1996
  • The simplest and lightest element-hydrogen is an alternative fuel which provides a clean and renewable energy source. Hydrogen can be used to power gas-type appliance and modified automobiles with water vapor as the only byproduct of combustion. Historically, production of hydrogen from coal was one of the mass production technology of hydrogen. In this paper, the status of hydrogen production process from coal was investigated to review the current situation of hydrogen production and utilization.

  • PDF