• Title/Summary/Keyword: Clay Sand Layer

Search Result 138, Processing Time 0.025 seconds

Analysis of Quaternary Sedimentary Environment based on 3D Geological Modeling for Saban-ri, Haeri-myeon, Gochang (고창군 해리면 사반리 일대 3차원 지질모델링을 활용한 제4기 퇴적환경분석)

  • Shin, Haein;Yu, Jaehyung;Bae, Sungji;Yang, Dongyoon;Han, Min
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2016
  • This study examined stratigraphic research containing extreme climate event during Quaternary period in Saban-ri, Haeri-myeon, Gochang by constructing 3D topographic model and 3D geological model. As a result of 3D topographic model and subsurface geological model, the geology of study area accumulated bedrock, Pleistocene series, and Holocene series chronologically. Most of the study area consist of bedrock on basement and Holocene series on upper layer. Additionally, Pleistocene series are presented as lens-shaped deposit on eastern part, and wedge-shaped deposit on northeastern part. Holocene layers consist of sand and clay-silt layer deposited sequentially where implies fluvial deposits on transgression environment. Distinctively, Pleistocene clayey silt layer and Holocene sand layer on eastern are observed as pond shape deposits that are considered as storm-related deposits originated from overwash system caused by extreme paleoclimate.

Pedogenesis of Forest Soils(Kandiustalfs) Derived from Granite Gneiss in Southern Part of Korea (우리나라 남부지역(南部地域) 화강편마암질(花崗片麻巖質) 삼림토양(森林土壤)의 토양생성(土壤生成))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.186-199
    • /
    • 1997
  • The soils derived from granite gneiss occupy almost one third of the land area in Korea. The soils under forest vegetation, formed on granite gneiss, in Sun chon-shi, Chollanam-do in southern part of Korea, were studied to evaluate the weathering and the transformation of primary minerals into secondary minerals, clay minerals. The studied soils contained large amounts of ferromagnesian minerals, weathered biotites and were well weathered, strongly acid and low in organic matters and in ration exchange capacity. The clay contents in the Bt horizon were almost two times higher than those in the C horizon. The O horizon had a thin layer which consisted of a little decomposed plant components with a granic fabric and high porosity, and showed the micromorphological characteristics of moder humus. The related distribution pattern of the E horizon were enaulic and large amounts of silts and small amounts of sand grains were another characteristics of the E horizon. The most striking micromorphological features were multilaminated clay coating and infillings in the voids in the Bt and C horizons, and generally limpid ferriargillans ejected from the biotites and imparted red color to the soils in the Bt horizon. High clay contents in the Bt horizon was not only due to clay translocation, but also due to intensive in situ mineral weathering in this horizon. The most significant pedogenic process, revealed by the petrographic microscope and SEM, was the formation of iron oxides from biotites, the formation of tubular halloysites and the weathering models of biotites; wedge weathering and layer weathering. The thick coating on the weathering biotites showed the characteristics of the weathering process and the synthetic hematites were revealed in clays by TEM. Total chemical analysis of clays revealed extensive loss of Ca, and Na and the concentration of Fe and Al. Mineralogical studies of clays by XRD showed that micas were almost completely weathered to kaolinite, vermiculite-kaolinite intergrade, hematite, gibbsite, while halloysites from other primary minerals. Some dioctahedral mica appeared to be resistant in the soils. Parent rock of the soils contained a considerable amounts of biotites and this forest soils showed especially a dominant characteristics of biotite weathering.

  • PDF

Distribution Characteristics of Quaternary Geology and Aggregate Resources in Geumsan-gun, Chungcheongnam-do (충청남도 금산군 일대 제4기 지질 및 골재자원 분포 특성)

  • Kim, Jin Cheul;Kim, Ju Yong;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.595-603
    • /
    • 2021
  • Sand layer distribution, which is the main target of river and land aggregate resources, mainly belongs to alluvial and river sedimentary environments among the Quaternary sedimentary environments. The distribution of aggregate resources in the area of Geumsan-gun, Chungcheongnam-do is characteristically developed around a sedimentation environment in which intrusive meandering river dominate. Although the area around Bonhwangcheon Stream and the area near the confluence of small streams are small, the river floodplain develops and corresponds to the aggregate distribution area. The sedimentary layer formed in the sedimentary environment such as colluvial deposits or alluvial fan deposits has a relatively low distribution rate of aggregate resources. The vertical distribution of the Quaternary sedimentary layers in the Geumsan-gun region ranges from about 5 to 12 m and has an average Quaternary sedimentary thickness of 8 m. The aggregate-bearing section has an average thickness of 3.6 m, and the average grain size is about 21% clay-silt, 67% sand, and 12% gravel. The main characteristics of the aggregate-bearing section are that coarse-grained sand predominates, and gravel is sub-angular or sub-rounded, and the sorting is generally poor and has a massive form of deposits, and the soil colour ranges from dark grey to yellowish-brown. In Geumsan-gun, the most likely distribution area for aggregate development is the alluvial sedimentary and river sedimentary layers distributed along the current and former riverbeds of the main Geumgang River, Bonhwangcheon and small River tributaries.

A Study on the Soil Stress Distribution in Furrow Slice (역토내(壢土內)의 응력분포(應力分布)에 관(關)한 연구(硏究))

  • Lee, Ki Myung;Lee, Suk Gun;Kim, Tae Han
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.1-7
    • /
    • 1983
  • In order to identify the stress distribution on the furrow slice a small soil bin instrumented with soil stress meters was designed and constructed. From a series of experiments conducted in the soil bin the following results were obtained. 1) Neither the cutting conditions nor the soil conditions affected the direction of the principal stress. 2) The magnitude of the principal stress increased as the tillage depth increased. However, no effects due to lift angles were shown on the magnitude of the principal stresses. 3) The maximum principal stress increased with increase of the moisture and clay contents in the soil. 4) In the clay soil, the maximum principal stresses were distributed uniformly over the tillage depth. However, as the sand content increased, the maximum principal stresses decreased gradually on the top layer so that the distribution over the tillage depth became a trapezoidal shape.

  • PDF

Determination of True Resistance from Load Transfer Test Performed on a PHC Pile (PHC 말뚝의 하중전이실험을 통한 참 지지력의 산정)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Dzung, N.T.
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.113-122
    • /
    • 2006
  • Although a number of static pile load tests have been performed in this country, re-consideration on the interpretation and loading method is needed, because of their less usefulness in practice. For this study, a static loading testing was performed for a long instrumented PHC pile, which was installed in sand layer overlying thick soft clay. The shaft resistance of the pile had been monitored for a long time after installation, and then the static load testing was performed by the quick load test, unlike the recent Korean practice. Using the measured data, the elastic modulus of pile, residual stress and true resistance on the pile were determined. In the event, it was found that the residual stress on the pile, which remained prior to the static loading, significantly affects the shaft and toe resistances. Also, it was realized that the setup effect for the long pile is significant.

Provenance of the ARA07C-St02B Core Sediment from the East Siberian Margin (동시베리아해 연변부 ARA07C-St02B 코어 퇴적물의 기원지 연구)

  • Koo, Hyo Jin;Lim, Gi Taek;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2022
  • The Arctic Ocean is very sensitive to global warming and Arctic Ocean sediments provide a records of terrestrial climate change, analyzing their composition helps clarify global warming. The gravity core sediment ARA07C-St02B was collected at the East Siberian margin during an Arctic expedition in 2016 on the Korean ice-breaking vessel ARAON, and its provenance was estimated through sedimentological, mineralogical and geochemical analysis. The core sediment was divided into four units based on sediment color, sand content and ice-rafted debris content. Units 1 and 3 had higher sand and ice-rafted debris contents than units 2 and 4, and contained a brown layer, whereas units 2 and 4 were mainly composed of a gray layer. Correlation analysis using the adjacent core sediment ARA03B-27 suggested that the sediment units were deposited during marine isotope stage 1 to 4. The bulk mineral, clay mineral, and geochemical compositions of units including a brown layer differed from units including a gray layer. Bulk and clay mineral compositions indicated that coarse and fine sediments had a different origin. Coarse sediments might have been deposited mostly by the East Siberian Coastal Current from the Laptev Sea and the East Siberian Sea or by the Beaufort Gyre from the Chukchi Sea, whereas fine sediments might have been transpoted mostly by currents from the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. Some of the coarse sediments in unit 1 and fine sediments in unit 3 might have been deposited by iceberg ice, sea ice or current from the Beaufort Sea and the Canada Archipelago. Investigating the geochemical composition of the potential origins will elucidate the origin and transportation of the study area's core sediments.

Sedimentary Facies and Processes in the Ulleung Basin and Southern East Sea (동해남부해역과 울릉분지의 퇴적상과 퇴적작용)

  • Lee, Byoung-Kwan;Kim, Seok-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.160-166
    • /
    • 2007
  • The coarse deposit with a lower mud content adjacent to the shelf of the southern East Sea is probably a "relict" sediment deposited in response to a lower stand of sea level during the Pleistocene. The sediment that developed on the slope and in the deep sea was river-borne primarily and was secondarily reworked or redistributed by the Tsushima Warm Current from the East China Sea. The clay mineralogy of the area suggests various sources of fine-grained sediment from adjacent rivers, the Korea Strait, volcanic material from Ulleung Island, and the Japan coast. Massive sand, bioturbated mud, homogeneous mud, and laminated mud were the dominant facies found in the core sediments from the study area. The massive sand was mainly volcanic ash from an eruption on Ulleung Island (9300 yr BP) and consisted of colorless pumiceous glass and a black scoriaceous type. The sedimentation rates on the slope, based on the Ulleung-Oki ash layer, were about 10cm/ky higher than in the basin. Other than the coarse-grain sediment, the mean size of the fine sediment dominating the bioturbated and homogeneous muds in the basin and the laminated mud on the slope was 6-10 phi. This indicates a difference in the major sedimentary process: hemipelagic sedimentation in the Ulleung Basin and mass flow deposition, such as turbidite, on the slope of the southern East Sea.

Suggestion of the Prediction Method about Upheaval Shape and Volume for SCP Construction (SCP 시공에 따른 융기토 형상과 체적의 예측기법 제안)

  • Jeong, Gyeong-Hwan;Park, Chan-Woo;Shin, Min-Sik;Hideo-Tsuboi;Mitsuo-Nozu;Lee, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.497-508
    • /
    • 2006
  • Busan-Geoje Fixed Link, total length of 8.2km, consist of bridge and immersed tunnel connects Gaduk island, Busan and Jangmokmyon, Geoje, in extension of the $58^{th}$ local road. The immersed tunnel, a total length of 3.7km within Busan-Geoje Fixed Link, was planed first timein domestic but the deep water depth like maximum of 50m with offshore conditions and the 35m thickness of soft clay layer under the immersed tunnel, migth be some problems like the differential settlement during or after works. So it was designed to install SCP(Sand Compaction Pile) column partially to improve the soft ground under the immersed tunnel. In this paper, it is presented to illustrate the design including ground condition under the immersed tunnel, improvement design, upheaval shape and ratio due to SCP test construction.

  • PDF

A hybrid approach to predict the bearing capacity of a square footing on a sand layer overlying clay

  • Erdal Uncuoglu;Levent Latifoglu;Zulkuf Kaya
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.561-575
    • /
    • 2023
  • This study investigates to provide a fast solution to the problem of bearing capacity in layered soils with easily obtainable parameters that does not require the use of any charts or calculations of different parameters. Therefore, a hybrid approach including both the finite element (FE) method and machine learning technique have been applied. Firstly, a FE model has been generated which is validated by the results of in-situ loading tests. Then, a total of 192 three-dimensional FE analyses have been performed. A data set has been created utilizing the soil properties, footing sizes, layered conditions used in the FE analyses and the ultimate bearing capacity values obtained from the FE analyses to be used in multigene genetic programming (MGGP). Problem has been modeled with five input and one output parameter to propose a bearing capacity formula. Ultimate bearing capacity values estimated from the proposed formula using data set consisting of 20 data independent of total data set used in MGGP modelling have been compared to the bearing capacities calculated with semi-empirical methods. It was observed that the MGGP method yielded successful results for the problem considered. The proposed formula provides reasonable predictions and efficient enough to be used in practice.

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.