• Title/Summary/Keyword: Clay Mineral

Search Result 551, Processing Time 0.028 seconds

A Study on the Making Properties of Natural Pigments based on Substance Characteristics for Hwangto in Korea (국내 산출되는 황토의 특징에 따른 천연(제조)안료 특성연구)

  • Mun, Seong Woo;Kang, Yeong Seok;Park, Ju Hyun;Han, Min Su;Jeong, Hye Young
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.600-611
    • /
    • 2019
  • Yellow to reddish brown soil is generally referred to as hwangto and is used in various industries in Korea. Despite the fact that it is used as an inorganic pigment in dancheong, limited studies have been conducted on the properties of pigments associated with soil and on the mineralogical characteristics of hwangto. This study examines how the pedological and mineralogical features of hwangto affect pigment properties. Results indicate that reddish and yellowish soils have differences in terms of soil texture, mineral composition, oil absorption and stability under light. Reddish soil is mostly found in clay regions, whereas Ulleungdo hwangto is found in loam regions. Yellowish soil is mostly present in the clay loam to loam zones. whereas Haenam hwangto exists in the sandy clay loam zone. As a result of a mineralogical analysis, reddish soil is classified into the feldspar group and clay soil. The major minerals in the yellowish soils are similar however these soils differ in terms of clay mineral compositions. results of the characteristics of pigments prepared by the traditional method revealed that the average particle size is in the range of 10-20 ㎛, reddish soil has an average of 20 ml/100 g higher oil absorption than yellowish soil. In addition, reddish soil is more susceptible to discoloration and deterioration under light than yellowish soil. This study confirms that the soil and mineral characteristics of hwangto affect the physical properties and stability of produced pigments. These result can be used as basic data in future studies natural inorganic pigments using hwangto.

Characteristics of Clay Minerals in Sihwa Area (시화지구 연약점토의 광물학적 특성)

  • 김낙경;박종식;김유신
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.773-780
    • /
    • 2003
  • The characteristics of soft clays is very important for the land development plan. This study is to investigate correlations between the engineering properties and the characteristics of clay minerals of the disturbed clay samples obtained from Sihwa area. This study included X-Ray Diffraction Analysis, X-Ray Fluorescence Spectrometer Analysis, Scanning Electron Microscopy Analysis and Energy Dispersive X-Ray Spectrometer Analysis. The correlations between the clay mineral properties and the laboratory and field testing results were investigated.

  • PDF

Fabrication of Calcined Clay Granule Comprising Zeolite (제올라이트를 함유하는 소성점토의 제조)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Jeong, Soo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.239-246
    • /
    • 2008
  • This research tried to find out the optimum fabrication method of calcined clay granules comprising zeolite. Kaolin clay and natural zeolite powder were used as raw materials of calcined clay, and silica stone powder was used for controlling the porosity of the granules. The granulation was performed with two kinds of granulators: a pan granulator and a high-shear mixer granulator. Various granules were fabricated by the mixing ratios and the rotation speeds of the granulators, and were heated from 400 to $700^{\circ}C$ at $100^{\circ}C$ interval. The crushing strength, pore size distribution, and CEC of the granules were measured. The evaluation method for the resistance of granules to human treading was created and the tests were conducted at dry and wet conditions. The resistance and crushing strength improved in proportion to the rotation speed of the granulator and the heating temperature, but the CEC decreased. The pellet made by the pan granulator did not have the strength against treading upon heating to below $700^{\circ}C$, but the pellet made by the high-shear mixer granulator endured the treading test upon heating to over $500^{\circ}C$

Utilization of a Coal-preparation Refuse as a Raw Material for Clay Brick (점토벽돌 원료로서 선탄폐석의 활용)

  • Hyun Jong-Yeong;Jeong Soo-Bok;Chae Young-Bae
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.3-9
    • /
    • 2005
  • In this study, the utilization possibility of coal-preparation refuse emitted from Hwasun coal mine in Korea as a raw material for ceramic body was investigated. The firing shrinkage ratio of ceramic specimen made from the coal-preparation refuse was reduced with increasing the addition amounts of that, while the compressive strength was slightly decreased. The weight of ceramic body was also reduced because carbon contained in the coal-preparation refuse was burn by fring. The water adsorption ratio of the ceramic specimen was under 10 wt%, and the compressive strength of that was over 21 MPa at over $1,150^{\circ}C$ for 2 hr. Therefore, it was possible to make the 1st garde clay brick of KS L 4201 from the coal-preparation refuse.

Studies on Mineral Composition of Fault Clay in Quaternary Ipsil Fault: High Resolution Powder Diffraction Analysis (제4기 입실 단층 파쇄대에서 나타나는 단층점토의 산출상태에 따른 광물조성 연구: 고해상도분말회절 분석을 중심으로)

  • Park, Sung-Min;Kang, Han;Jang, Yun-Deuk;Im, Chang-Bock;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.83-89
    • /
    • 2007
  • XRD, HRPD and SEM were used for mineralogical characterization of fault clay in fracture zone from Ipsil. Variations of color in fault clay exhibit significant mineral composition difference. Fault clays from Ipsil are composed mainly of smectite, laumontite, and quartz. Laumontite, a distinct fault clay in Ipsil fault, might be resulted from alteration of bed rock in fracture zone based on the result that no laumontite was found near fault rock. Fault clays from Ipsil are composed mainly of smectite.

ROLE OF SOILS IN THE DISPOSAL OF NUCLEAR WASTE

  • Lee, S.Y.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.251-268
    • /
    • 1986
  • Selecting a site for the safe disposal of radioactive waste requires the evaluation of a wide range of geologic, mineralogic, hydrologic, and physicochemical properties. Although highly diverse, these properties are in fact interrelated. Site requirements are also diverse because they are influenced by the nature of the radionuclides in the waste, for example, their half-lives, specific energy, and chemistry. A fundamental consideration in site selection is the mineralogy of the host rock, and one of the most ubiquitous mineral groups is clay minerals. Clays and clay minerals as in situ lithologic components and engineered barriers may playa significant role in retarding the migration of radionuclides. Their high sorptivity, longevity (stability), low permeability, and other physical factors should make them a very effective retainer of most radionuclides in nuclear wastes. There are, however, some unanswered questions. For example, how will their longevity and physicochemical properties be influenced by such factors as radionuclide concentration, radiation intensity, elevated temperatures, changes in redox condition, pH, and formation fluids for extended periods of time? Understanding of mechanisms affecting clay mineral-radionuclide interactions under prevailing geochemical conditions is important; however, the utilization of experimental geochemical information related to physicochemical properties of clays and clay-bearing materials with geohydrologic models presents a uniquely challenging problem in that many assessments have to be based on model predictions rather than on experiments. These are high-priority research investigations that need to be addressed before complete reliance for disposal area performance is made on clays and clay minerals.

  • PDF

A Study on Unburned Refractory for Ladle -Especially for Sling mass- (부소성 Ladle용 내화물에 관한 연구 -Sling mass의 특성을 중심으로-)

  • 박금철;한문희
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.4
    • /
    • pp.213-223
    • /
    • 1978
  • The purpsoe of this study was to produce domestic stamping materials; sling mass which could be used as unburned refractory for iron melt'ladle. Batch compositions were based on Belgian Ladelite; mineral compositions were composed of 84 wt% of quartz and 16 wt% of clay, and particle sizes were divided into 12 wt% of 1410/297㎛, 18wt% 297/149㎛, 20wt% of 149/74㎛, 11wt% 74/44㎛ and 39wt% 44㎛ under. The effect of variable batch compositions were also investigated such as substitution of pyrophylite or industrial grade alumina for quartz and of zircon for portion of quartz and clay, increase of clay and addition on sericite. Samples were pressed at 100kg/㎠ with 7.4wt% of water or 7.4wt% of 4 wt% PVA solution. Dried and Fired properties of samples such as linear shrinkage, apparent porosity, modulus of rupture, refractoriness and corrosion resistance to blast furnace slag were investigated. The results are summarized as follows. 1. Dried samples are shrinked, but fired at 700-1400℃ expanded. Samples fired at 700-1000℃ and 1200-1400℃ tended to expand with incresing of firing temperature, but fired at 1000-1200℃ tended to shrink with increase of firing temperature. 2. Apparent porosity of samples fired at 700℃ is increased, but fired at 1200-1400℃ decreased with increasing of firing temperature. 3. Modulus of rupture of samples fired at 700℃ is decreased, but fired at above 700℃ increased with increasment of firing temperature. 4. Dried samples with 7.4 wt% of 4 wt% PVA solution better improve modulus of rupture than with 7.4 wt% of water, but the firing strength of the sampels fired at 700-1000℃ is showed reversely. 5. In quartz-clay system, mineral phases of samples fired at above 1200℃ are consisted of α-quartz, α-cristobalite and mullite. Respectively as firing temperature was rising up, intensity of α-cristobalite and mullite is in creased. 6. Quartz-Kibushi clay system, Kimcheun quartz(substitutuion of portion of industrial grade alumina for quartz) Hampyeung clay system and pyrophyllite-clay system are better in corrosion resistance to blast furnace slag than burned pyrophyllite brick. 7. 84 wt% of pyrophyllite-16wt% of clay system is superior in modulus of rupture and corrosion resistance to blast furnace slag to 84 wt% of quartz-16 wt% of clay system.

  • PDF

A Study on the Development of Model for Estimating the Thickness of Clay Layer of Soft Ground in the Nakdong River Estuary (낙동강 조간대 연약지반의 지역별 점성토층 두께 추정 모델 개발에 관한 연구)

  • Seongin, Ahn;Dong-Woo, Ryu
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.586-597
    • /
    • 2022
  • In this study, a model was developed for the estimating the locational thickness information of the upper clay layer to be used for the consolidation vulnerability evaluation in the Nakdong river estuary. To estimate ground layer thickness information, we developed four spatial estimation models using machine learning algorithms, which are RF (Random Forest), SVR (Support Vector Regression) and GPR (Gaussian Process Regression), and geostatistical technique such as Ordinary Kriging. Among the 4,712 borehole data in the study area collected for model development, 2,948 borehole data with an upper clay layer were used, and Pearson correlation coefficient and mean squared error were used to quantitatively evaluate the performance of the developed models. In addition, for qualitative evaluation, each model was used throughout the study area to estimate the information of the upper clay layer, and the thickness distribution characteristics of it were compared with each other.

Mineral Distribution of the Southeastern Yellow Sea and South Sea of Korea using Quantitative XRD Analysis (정량X선회절분석법을 이용한 황해 남동부, 한국남해 및 제주도 남단 표층퇴적물의 광물분포 연구)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Kyung-Hoon;Do, Jin-Young;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.49-61
    • /
    • 2009
  • We studied the mineral composition and mineral distribution pattern of 131 surface sediments collected at the cruise in 2000 and 2007 from Southeastern Yellow Sea, South Sea of Korea and Southern part of Jeju Island. Mineral compositions of surface sediments were determined using the quantitative X-ray diffraction analysis. Surface sediments were composed of rock forming minerals (quartz 37.4%, plagioclase 11.7%, alkali feldspar 5.5%, hornblende 3.1%), clay minerals (illite 19.2%, chlorite 4.7%, kaolinite 1.8%) and carbonate minerals (calcite 10.7%, aragonite 3.4%). Distribution of clay minerals is very similar with fine-grained sediments, and especially same as the distribution of HSMD (Hucksan Mudbelt Deposit), SSKMD (South Sea of Korea Mudbelt Deposit) and JJMD (Jeju Mudbelt Deposit). The coarse sediment seemed to be relic sediment during the last glacial maximum and mainly consisted of rock forming minerals. Whereas the fine sediments mainly composed of clay minerals. Based on the clay mineral composition, main ocean current and geographical factor, HSMD and SSKMD might have derived from the rivers around the Korean Peninsula. However, JJMD is complex mudbelt deposit, which formed by Korean rivers and oceanic sediments.

Adsorption of methyl 2-benzimidazole carbamate on clay minerals (점토광물(粘土鑛物)에 의(依)한 methyl 2-benzimidazole carbamate의 흡착(吸着))

  • Kim, Bark-Jung;Park, Man;Hur, Nam-Ho;Choi, Jung
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.125-129
    • /
    • 1991
  • This experiment was carried out to examine the MBC adsorption on clay minerals by the slurry method. The adsorption of MBC on Kaolinite nearly reached equilibrium after shaking lot 2hrs. but on Bentonite and Zeolite, 10hrs., respectively. The adsorption amount was in the order of Zeolite>Bentonite>Kaolinite, and Na-saturated clay mineral adsorbed more MBC than Mg-saturated clay mineral did. The more the amount of clay minerals, the more MBC was adsorbed by clay minerals, whereas the amount of MBC adsorbed per unit gram of clay minerals reduced and Kd value cf MBC was greatest on the Na-Zeolite. The lower the pH of the water-clay system at each concentration, the more MBC was adsorbed by clay minerals. The pH dependence of the adsorption of MBC may be due to protonation of MBC in acid solution.

  • PDF