• Title/Summary/Keyword: Clay

Search Result 4,490, Processing Time 0.033 seconds

A Study on the Infrared Emission Properties and Freeze-thaw Resistance for Calcined Clay by Carburization Treatment (소성 점토의 침탄에 따른 동결융해 저항성 및 적외선 방사특성 연구)

  • Kim, Ki-Ho;Kim, Sang-Myoung;Kang, Byung-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.387-394
    • /
    • 2008
  • The Physical property changes of calcined clay by carburization were investigated studied. The carburization mechanism is the penetration of carbon which occurred during incomplete fuel combustion into crevice of clay structure. The experiments for elasticity and freeze-thaw resistance were conducted, and the results can be summarized as follows: Dynamic modulus of elasticity and also freeze-thaw resistance of calcined clay by carburization treatment increased more than 92% after testing 300 cycle, which was more improved than 88% of calcined clay. Therefore, it can decrease the possibility of winter-sowing, which is one the weakness of calcined clay. It is on the basis of the fact that the porosity of calcined clay by carburization treatment is about 12%, which indicates smaller pore spaces comparing with the 14% of porosity of calcined clay and those values were calculated by apparent porosity show and also supported by SEM images. Infrared emissivity of calcined clay by carburization treatment and calcined clay were respectively 0.92 and 0.9l at $80^{\circ}C$. However, those values were 0.91 and 0.88 at $200^{\circ}C$, which means infrared emissivity of calcined clay by carburization treatment shows 3.6% higher than the calcined clay. Moreover, within the wavelength range from 3 to $7\;{\mu}m$, while the calcined clay had low infrared emissivity, the calcined clay by carburization treatment had increased infrared emissivity. It is inferred that it was affected by carbon element that has high infrared absorptivity within this wavelength range.

STRENGTH CHANGES OF SURROUNDING CLAY DUE TO SOIL-CEMENT COLUMN INSTALLATION

  • Miura, Norihiko
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.10a
    • /
    • pp.19-36
    • /
    • 1997
  • This paper discusses the reduction and subsequent recovery and increase of shear strength of clay in the vicinity of soil-cement column. Laboratory and field tests were conducted to investigate the effects on surrounding clay during and after soil-cement column installation in soft Ariake clay. Discussions were made on the mechanism of strength changes of clay by considering the thixotropic recovery, reconsolidation effect, penetration of cement slurry and diffusion of exchangeable cations. On the basis of field and laboratory observations, 10 days after column installation, the decreased shear strength of surrounding clay during mixing was recovered and 30 days later, shear strength of surrounding clay increased 30% by average. Therefore, it is recommended that the increase of shear strength of clay can be taken into consideration in the bearing capacity and stability analysis of the composite ground.

  • PDF

Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay (점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동)

  • 신은철;김종인;박정준;이학주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF

Reaction Products and Properties of Clay Mixed with Lime (점토와 석회의 혼합에 의한 반응생성물과 물성변화)

  • 김병규;황진연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.505-512
    • /
    • 1999
  • Soft marine clay deposits pose several foundation problems. Generally, lime stabilization is used worldwide for solidifying of soft marine clay deposits. In this paper, a series of laboratory tests were conducted to verify clay-lime reaction. A clay was collected from Pusan, which was mixed with various quantities of quick lime and slaked lime. Various compounds produced by clay-lime reaction were identified by X-ray diffraction analysis. The physico-chemical properties of the clay were also investigated. Compounds such as calcium silicate hydrate (CSH), calcium aluminate hydrate (CAH), calcium aluminate (CA), hillebrandite, and gehlenite were identified. It is likely that such compounds were mainly produced by pozzolanic reaction. Based on the change of physico-chemical properties obtained by the reaction, the water content was considerably decreased when lime was added to the clay. In addition, unconfined strength was increased. In the other hand, quick lime was more effective than slaked lime in decreasing and increasing of the water content and unconfined strength, respectively. Fewer cracks were produced when the clay was mixed with quick lime. It is suggested that these beneficial changes produced by the mixing of the clay and lime depend on the properties of compounds obtained by chemical reaction.

  • PDF

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

Properties of Clay-Woodceramics from 3 layers-clay-woodparticleboard (점토목재파티클보드로 제조된 Clay-Woodceramics의 성질)

  • Lee, Hwa Hyoung;Kim, Gwan Eui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.80-87
    • /
    • 2003
  • This research was carried out to examine physical and mechanical properties of clay-woodceramics which were carbonized for 3 hours in a special furnace from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol formaldehyde resin(hereafter PF, Non volatile content 52%, resin content 30%) and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. The results are summarized as follows: 1. The higher the carbonization temperature, the higher the dimensional shrinkage and the lower the carbonization yield ratio. But the higher the clay addition, the lower the dimensional shrinkage and the higher carbonization yield ratio. 2. The higher the carbonization temperature, the higher the water absorption and the density. The higher the clay content, the higher the density. 3. The higher the carbonization temperature, the higher the bending Modulus of Rupture and bending Modulus of Elasticity.

Determination of Skin Adhesion Rate of Children's Modeling Clay for Exposure Assessment (어린이 노출평가를 위한 점토류의 피부 점착률 산출)

  • Guak, Sooyoung;Lim, Miyoung;Shin, Hyerin;Park, Ji Young;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.238-243
    • /
    • 2018
  • Objectives: The purpose of this study was to determine skin adhesion rate of children's modeling clay for exposure assessment. Methods: Children's modeling clays were classified into 10 categories as PVA clay, PVA soft clay, starch-based clay, foam clay, rubber clay, oil clay, muddy clay, terra clay, paper clay and slime. A total of 26 children's clay goods was selected. Moisture content (%) and hardness of clays were measured. Five adults aged 20 to 25were recruited for experiment. Gravimetric difference of modeling clay was determined after 3 minutes playing time. Skin adhesion rate ($g/min/cm^2$) was estimated bythe amount of skin adhesion per minute (g/min) and each individual's palm surface area ($cm^2$). Results: Twenty four of the 26 children's modeling clay products were adhesive to skins. Two products of foam and rubber clay were not adhered to skin. For the 24 products, the average skin adhesion rate was $5.5{\times}10^{-4}{\pm}4.0{\times}10^{-4}g/min/cm^2$. The highest skin adhesion rate was $1.3{\times}10^{-3}{\pm}4.4{\times}10^{-4}g/min/cm^2$ for paper clay. The lowest skin adhesion rate was $4.6{\times}10^{-5}{\pm}1.1{\times}10^{-4}g/min/cm^2$ for oil clay. The skin adhesion rate was increased with increase of moisture content. Adhesion rates of some clays were varied by person and testing trials. Conclusion: The study determined skin adhesion rate of children's modeling clay. The adhesion rate is useful for exposure and risk assessments and setting safety guideline to protect children's health.

Preparation and Properties of Low Density Polyethylene/Organo-clay Nanocomposite (저밀도 폴리에틸렌 나노복합재료의 제조 및 특성)

  • Moon, Sung-Chul;Jung, Hyo-Sun;Lee, Jae-CHul;Hong, Jin-Who;Choi, Jae-Kon;Jo, Byung-Wook
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • In this study, low density polyethylene/organo-clay nanocomposites were prepared by melt blending. Thermal property, structure, and morphology of the LDPE/organo-clay nanocomposites were investigated. When the composition ratios of the compounds of LDPE/PE-g-MA/organo-clay were 90/10/1~10 (w/w/w), X-ray diffractograms of LDPE/organo-clay nanocomposites revealed that the intercalation of polymer chains lead to increase the spacing between clay layers. TEM microphotographs showed that LDPE was intercalated into organo-clay. TGA performed under air atmosphere demonstrated a great increase in thermal stability of the LDPE/organo-clay nanocomposties. The maximum decomposition temperature of LDPE/organo-clay nanocomposite was increased about $80^{\circ}C$ compared with pure LDPE. When the organo-clay contents were 1.0~5.0 wt%, the LOI values were increased with increasing the organo-clay content, but in the case of the contents more than 5.0 wt%, the LOI values were not increased any more.

Morphology and Miscibility of PMMA/SMA/Clay Nanocomposites (PMMA/SMA/Clay 나노복합재료의 형태학 및 상용성)

  • Lee, Min-Ho;Min, Byong-Hun;Kim, Jeong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.252-257
    • /
    • 2010
  • Nanocomposites of blends of polymethyl methacrylate (PMMA) and poly (styrene-co-maleic anhydride) (SMA) containing natural and organically modified montmorillonite clays ($Cloisite^{(R)}$25A and $Cloisite^{(R)}$15A) were prepared by solution mixing. Effect of clay on the miscibility, morphology and thermal properties of nanocomposites was investigated. DSC results showed that the addition of clay improved the miscibility of PMMA/SMA blends. Specifically, clay 15A was observed to be most effective than other clays in all nanocomposites regardless of MA contents of SMAs tested. Dispersion of clays was investigated using XRD and TEM and the nanocomposites containing clay 15A again showed the best clay dispersion than the ones with other clays.

Improvement of Mechanical Interfacial Properties of Epoxy/Clay Nanocomposites Using Silane Intercalant (실란유기화제를 이용한 에폭시/클레이 나노복합재료의 기계적 계면 물성 향상)

  • Park, Soo-Jin;Seo, Dong-Il;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.125-128
    • /
    • 2001
  • In this wort, the $Na^+-MMT$ has organically modified with silane intercalant to prepare the polymer/clay nanocomposites. The pH. X-ray diffraction (XRD), and contact angles were used to analyze the surface properties of clay and the exfoliation phenomenon of clay interlayer, The mechanical interfacial properties of epoxy/clay nanocomposites were investigated by three-point bending test. From the experimental results. the surface modification made by silane intercalant on clay surface leads to an increase of distance of silicate layers, surface acid value. and electron acceptor parameter of organoclay. The treatments are also necessary and useful for epoxy to intercalate into the interlayer by interacting of electron donor-accepter between basic epoxy and clay surface. The mechanical interfacial properties of the nanocomposites was improved by the presence of dispersed clay nanolayer containing low content of organoclay in comparison with the conventional, which increase the interfacial adhesion between dispersed clay and epoxy resins.

  • PDF