• 제목/요약/키워드: Classification technique

검색결과 1,716건 처리시간 0.029초

Development of Classification Technique of Point Cloud Data Using Color Information of UAV Image

  • Song, Yong-Hyun;Um, Dae-Yong
    • 한국측량학회지
    • /
    • 제35권4호
    • /
    • pp.303-312
    • /
    • 2017
  • This paper indirectly created high density point cloud data using unmanned aerial vehicle image. Then, we tried to suggest new concept of classification technique where particular objects from point cloud data can be selectively classified. For this, we established the classification technique that can be used as search factor in classifying color information in point cloud data. Then, using suggested classification technique, we implemented object classification and analyzed classification accuracy by relative comparison with self-created proof resource. As a result, the possibility of point cloud data classification was observable using the image's information. Furthermore, it was possible to classify particular object's point cloud data in high classification accuracy.

Scaling Up Face Masks Classification Using a Deep Neural Network and Classical Method Inspired Hybrid Technique

  • Kumar, Akhil;Kalia, Arvind;Verma, Kinshuk;Sharma, Akashdeep;Kaushal, Manisha;Kalia, Aayushi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3658-3679
    • /
    • 2022
  • Classification of persons wearing and not wearing face masks in images has emerged as a new computer vision problem during the COVID-19 pandemic. In order to address this problem and scale up the research in this domain, in this paper a hybrid technique by employing ResNet-101 and multi-layer perceptron (MLP) classifier has been proposed. The proposed technique is tested and validated on a self-created face masks classification dataset and a standard dataset. On self-created dataset, the proposed technique achieved a classification accuracy of 97.3%. To embrace the proposed technique, six other state-of-the-art CNN feature extractors with six other classical machine learning classifiers have been tested and compared with the proposed technique. The proposed technique achieved better classification accuracy and 1-6% higher precision, recall, and F1 score as compared to other tested deep feature extractors and machine learning classifiers.

Design and Implementation of the Ensemble-based Classification Model by Using k-means Clustering

  • Song, Sung-Yeol;Khil, A-Ra
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권10호
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, we propose the ensemble-based classification model which extracts just new data patterns from the streaming-data by using clustering and generates new classification models to be added to the ensemble in order to reduce the number of data labeling while it keeps the accuracy of the existing system. The proposed technique performs clustering of similar patterned data from streaming data. It performs the data labeling to each cluster at the point when a certain amount of data has been gathered. The proposed technique applies the K-NN technique to the classification model unit in order to keep the accuracy of the existing system while it uses a small amount of data. The proposed technique is efficient as using about 3% less data comparing with the existing technique as shown the simulation results for benchmarks, thereby using clustering.

효과적인 이메일 분류를 위한 빈발 항목집합 기반 최적 이메일 폴더 추천 기법 (A proper folder recommendation technique using frequent itemsets for efficient e-mail classification)

  • 문종필;이원석;장중혁
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.33-46
    • /
    • 2011
  • 이메일이 중요한 정보 전달과 의사소통의 수단으로 널리 활용된 이래 사람들은 이메일을 내용에 따라 적절하게 분류하는 작업에 많은 노력을 기울려 왔다. 이메일은 문서의 길이나 문체가 다양하며 사용되는 단어들이 비정규적이다. 또한 이메일 분류 기준은 일반적으로 해당 이메일 사용자의 주관에 따라 정의된다. 따라서 기존의 일반적인 문서분류 기법으로는 이메일을 효율적으로 분류하는데 어려움이 있다. 상업용 이메일 프로그램에서 제공되는 분류 기능은 메일 클라이언트에서 지원하는 텍스트 필터링을 이용한다. 한편 이메일의 자동 분류에 관한 연구는 확률 기반의 나이브 베이지안 기법을 응용하여 정확도를 높일 수 있는 연구가 주로 진행되어 왔으며, 대부분 영문 이메일에 대한 연구이다. 본 논문에서는 빈발 패턴 마이닝 기법을 적용하여 한글 이메일에 대한 개인 맞춤형 폴더 추천기법을 제시한다. 이메일의 맞춤형 폴더 추천 기법은 이메일에 대한 전처리 과정과 빈발 항목집합을 이용한 메일 폴더의 프로파일 생성과정으로 구성된다. 생성된 프로파일은 분류 대상이 되는 각 메일이 개인별 맞춤형 기준에 따라 가장 적합한 이메일 폴더로 효과적으로 분류되는데 활용된다. 또한 제안된 기법을 적용한 이메일 분류 시스템을 구현한다.

원격탐사 데이타의 정확도 향상을 위한 Bitemporal Classification 기법의 적용 (Application of Bitemporal Classification Technique for Accuracy Improvement of Remotely Sensed Data)

  • 안철호;안기원;윤상호;박민호
    • 한국측량학회지
    • /
    • 제5권2호
    • /
    • pp.24-33
    • /
    • 1987
  • 본 논문은 원격탐사 Data를 이용한 분야에서 보다 효과적인 좌상처리 기법 및 보다 정확한 분류화상을 얻는 것을 목적으로 하고 있다. 이의 실행을 위해 여름 좌상과 겨울 화상을 합성한 토지이용 분류결과와 여름 화상만의 분류결과를 비교분석 하였다. 위의 분석결과로부터 Bitemporal Classification 기법과 $tan^{-1}$변환이 유효함을 알아내었다. 특히 Bitemporal Classification 기법을 적용함으로써 농경지를 논과 밭으로 구별하여 분류하는 것이 보다 가능하였다.

  • PDF

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • 대한원격탐사학회지
    • /
    • 제25권3호
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

위성영상의 토지정보 분석정확도 향상을 위한 응용체계의 개발 - 다중시기 영상과 주성분분석 및 정준상관분류 알고리즘을 이용하여 - (Development of a Compound Classification Process for Improving the Correctness of Land Information Analysis in Satellite Imagery - Using Principal Component Analysis, Canonical Correlation Classification Algorithm and Multitemporal Imagery -)

  • 박민호
    • 대한토목학회논문집
    • /
    • 제28권4D호
    • /
    • pp.569-577
    • /
    • 2008
  • 본 연구의 목적은 위성영상으로부터 보다 정확한 토지정보를 취득하기 위해 다중시기데이터의 혼합과 특정 영상강조기법 및 영상분류알고리즘을 병합하여 적용하는 응용분류체계의 개발이다. 즉, 본 연구에서는 혼합된 다중시기데이터를 주성분분석한 후 정준상관분류기법을 적용하는 분류과정을 제안한다. 이 분류과정의 결과를 단일영상별 정준상관분류결과, 다중시기혼합영상의 정준상관분류결과, 시기별 주성분분석 후 정준상관분류결과와 비교한다. 사용된 위성영상은 1994년 7월 26일과 1996년 9월 1일에 취득된 Landsat 5 TM 영상이다. 정확도평가를 위한 지상실제데이터는 지형도 및 항공사진으로부터 취득되었으며, 연구대상영역 전체가 정확도평가 대상으로 사용되었다. 제안된 응용분류체계는 단일영상만을 사용하여 정준상관분류를 수행한 경우보다 분류정확도면에서 약 8.2% 상승되는 우수한 효과를 보여주었다. 특히, 복잡한 토지특성이 혼합되어 있는 도시역을 정확히 분류하는데 유효하였다. 결론적으로 Landsat TM 영상을 사용한 토지피복정보 추출시 분류정확도를 높이기 위해서, 다중시기영상을 사전에 주성분분석 후 정준상관분류기법을 적용하면 매우 효과적임을 확인하였다.

Gait-Based Gender Classification Using a Correlation-Based Feature Selection Technique

  • Beom Kwon
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.55-66
    • /
    • 2024
  • 성별 분류 기술은 법의학, 감시 시스템, 인구 통계 연구 등 다양한 분야에서 활용될 수 있기 때문에, 연구자들로부터 많은 관심을 받고 있다. 남성과 여성의 보행 사이에는 서로 구별되는 특징이 있다는 것이 기존 연구들에서 밝혀지면서, 3차원 보행 데이터에서 성별을 분류하는 다양한 기술들이 제안됐다. 하지만, 기존 기술들을 사용해 3차원 보행 데이터로부터 추출한 보행 특징 중에는 서로 유사 또는 중복되거나 성별 분류에 도움이 되지 않는 특징들도 있다. 이에 본 연구에서는 상관관계 기반 특징 선별 기술을 활용해, 성별 분류에 도움이 되는 특징들을 선별하는 방법을 제안한다. 그리고 제안하는 특징 선별 기술의 효용성을 입증하기 위해서, 인터넷상에 공개된 3차원 보행 데이터 세트(Dataset)를 활용하여 제안하는 특징 선별 기술을 적용하기 전과 후에 대해 성별 분류 모델들의 성능을 비교 분석하였다. 실험에는 이진 분류 문제에 적용할 수 있는 여덟 가지의 머신러닝 알고리즘(Machine Learning Algorithms)을 활용하였다. 실험 결과, 제안하는 특징 선별 기술을 사용하면 성별 분류 성능은 유지하면서, 특징의 개수를 82개에서 60개까지, 22개를 줄일 수 있다는 것을 입증하였다.

원격탐사 기법에 의한 서울, 대전, 인천지역 토지이용 분류연구 (A Study on the Land Use Classification of Seoul, Tajeon, Incheon Areas by Remote Sensing Technique)

  • 연상호
    • 대한원격탐사학회지
    • /
    • 제2권2호
    • /
    • pp.69-77
    • /
    • 1986
  • This study was emphasized on the land use classification by Remote Sensing Technique. Land cover maps about the major urbans, Seoul, Tajeon regions, its of each classified classes were extracted by use of Landsat MSS Data and Digital Image Processing System. From the results of this study, it was proved that land use classification by Remote Sensing technique could be used to obtain fully fruitful Results.

라프셋 이론이 적용에 의한 ID3의 개선 (Improvement of ID3 Using Rough Sets)

  • 정홍;김두완;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.170-174
    • /
    • 1997
  • This paper studies a method for making more efficient classification rules in the ID3 using the rough set theory. Decision tree technique of the ID3 always uses all the attributes in a table of examples for making a new decision tree, but rough set technique can in advance eleminate dispensable attributes. And the former generates only one type of classification rules, but the latter generates all the possibles types of them. The rules generated by the rough set technique are the simplist from as proved by the rough set theory. Therefore, ID3, applying the rough set technique, can reduct the size of the table of examples, generate the simplist form of the classification rules, and also implement an effectie classification system.

  • PDF