1 |
Hebah H. O. Nasereddin, "Stream Data Mining,"International Journal of Web Applications, vol.1,no.4, pp.183-190, 2009.
|
2 |
Kantardzic, Mehmed. Data mining: concepts, models, methods, and algorithms. John Wiley & Sons, 2011.
|
3 |
Tsymbal, Alexey. "The problem of concept drift: definitions and related work." Computer Science Department, Trinity College Dublin 106 (2004).
|
4 |
Wang, Haixun, et al. "Mining concept-drifting data streams using ensemble classifiers." Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2003.
|
5 |
Kolter, Jeremy Z., and M. Maloof. "Dynamic weighted majority: A new ensemble method for tracking concept drift." Data Mining, 2003. ICDM 2003. Third IEEE International Conference on. IEEE, 2003.
|
6 |
Brzezinski, Dariusz, and Jerzy Stefanowski. "Accuracy updated ensemble for data streams with concept drift." Hybrid Artificial Intelligent Systems. Springer Berlin Heidelberg, 2011. 155-163.
|
7 |
Joung-Woo Ryu and Myung-Won Kim, "An Ensemble Model based on Data Distribution for Streaming Data Classification," Journal of KIISE : Database Research, vol.40, no.2, 2013, 89-98.
|
8 |
Altman, Naomi S. "An introduction to kernel and nearest-neighbor nonparametric regression." The American Statistician 46.3 (1992): 175-185.
|
9 |
Domeniconi, Carlotta, and Dimitrios Gunopulos. "Incremental support vector machine construction." Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on. IEEE, 2001.
|
10 |
Bock, Hans-Hermann. "Clustering methods: a history of k-means algorithms." Selected contributions in data analysis and classification. Springer Berlin Heidelberg, 2007. 161-172.
|