• Title/Summary/Keyword: Classification of Difficulty

Search Result 247, Processing Time 0.022 seconds

A Study on the Leakage Characteristic Evaluation of High Temperature and Pressure Pipeline at Nuclear Power Plants Using the Acoustic Emission Technique (음향방출기법을 이용한 원전 고온 고압 배관의 누설 특성 평가에 관한 연구)

  • Kim, Young-Hoon;Kim, Jin-Hyun;Song, Bong-Min;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2009
  • An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg.Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness.

Optimal EEG Channel Selection by Genetic Algorithm and Binary PSO based on a Support Vector Machine (Support Vector Machine 기반 Genetic Algorithm과 Binary PSO를 이용한 최적의 EEG 채널 선택 기법)

  • Kim, Jun Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.527-533
    • /
    • 2013
  • BCI (Brain-Computer Interface) is a system that transforms a subject's brain signal related to their intention into a control signal by classifying EEG (electroencephalograph) signals obtained during the imagination of movement of a subject's limbs. The BCI system allows us to control machines such as robot arms or wheelchairs only by imaging limbs. With the exact same experiment environment, activated brain regions of each subjects are totally different. In that case, a simple approach is to use as many channels as possible when measuring brain signals. However the problem is that using many channels also causes other problems. When applying a CSP (Common Spatial Pattern), which is an EEG extraction method, many channels cause an overfitting problem, and in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest an optimal channel selection method using a BPSO (Binary Particle Swarm Optimization), BPSO with channel impact factor, and GA. This paper examined optimal selected channels among all channels using three optimization methods and compared the classification accuracy and the number of selected channels between BPSO, BPSO with channel impact factor, and GA by SVM (Support Vector Machine). The result showed that BPSO with channel impact factor selected 2 fewer channels and even improved accuracy by 10.17~11.34% compared with BPSO and GA.

Design of the Railbeam Lengths at the Roadbed (철도 레일빔 설계법에 대한 연구)

  • Jung, Hyuksang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • This paper deals with contents on the estimation of rail beam from the geotechnical engineering aspect. Rail beam is reinforced rail installed on the inside and outside of rail to prevent differential settlement during the construction period of railroad crossing construction. Such rail beam is frequently being installed to ensure stability of existing railroad facilities because of increasing constructions of underground structures crossing railroad in recent. However, there is a difficulty in design due to lack of design standard on rail beam length. Furthermore, derailing accidents are also occurring as a result of rail beam length shortage. Accordingly, this paper presented flow chart based on the classification into soil ground and bedrock ground for the rail beam length estimation. In addition, case study was conducted on rail combination and location through which effective rail combination and location were ensured.

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

Enhancement of Saliency Map Using Motion and Affinity Model (운동 및 근접 모델을 이용하는 관심맵의 향상)

  • Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.557-567
    • /
    • 2015
  • Over the past decades, a variety of spatial saliency methods have been introduced. Recently, motion saliency has gained much interests, where motion data estimated from an image sequence are utilized. In general, motion saliency requires reliable motion data as well as image segmentation for producing satisfactory saliency map which poses difficulty in most natural images. To overcome this, we propose a motion-based saliency generation that enhances the spatial saliency based on the combination of spatial and motion saliencies as well as motion complexity without the consideration of complex motion classification and image segmentation. Further, an affinity model is integrated for the purpose of connecting close-by pixels with different colors and obtaining a similar saliency. In experiment, we performed the proposed method on eleven test sets. From the objective performance evaluation, we validated that the proposed method produces better result than spatial saliency based on objective evaluation as well as ROC test.

Study of Static Analysis and Ensemble-Based Linux Malware Classification (정적 분석과 앙상블 기반의 리눅스 악성코드 분류 연구)

  • Hwang, Jun-ho;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1327-1337
    • /
    • 2019
  • With the growth of the IoT market, malware security threats are steadily increasing for devices that use the linux architecture. However, except for the major malware causing serious security damage such as Mirai, there is no related technology or research of security community about linux malware. In addition, the diversity of devices, vendors, and architectures in the IoT environment is further intensifying, and the difficulty in handling linux malware is also increasing. Therefore, in this paper, we propose an analysis system based on ELF which is the main format of linux architecture, and a binary based analysis system considering IoT environment. The ELF-based analysis system can be pre-classified for a large number of malicious codes at a relatively high speed and a relatively low-speed binary-based analysis system can classify all the data that are not preprocessed. These two processes are supposed to complement each other and effectively classify linux-based malware.

Dynamic Classification of Categories in Web Search Environment (웹 검색 환경에서 범주의 동적인 분류)

  • Choi Bum-Ghi;Lee Ju-Hong;Park Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.7
    • /
    • pp.646-654
    • /
    • 2006
  • Directory searching and index searching methods are two main methods in web search engines. Both of the methods are applied to most of the well-known Internet search engines, which enable users to choose the other method if they are not satisfied with results shown by one method. That is, Index searching tends to come up with too many search results, while directory searching has a difficulty in selecting proper categories, frequently mislead to false ones. In this paper, we propose a novel method in which a category hierarchy is dynamically constructed. To do this, a category is regarded as a fuzzy set which includes keywords. Similarly extensible subcategories of a category can be found using fuzzy relational products. The merit of this method is to enhance the recall rate of directory search by expanding subcategories on the basis of similarity.

Remote Fault Detection in Conveyor System Using Drone Based on Audio FFT Analysis (드론을 활용하고 음성 FFT분석에 기반을 둔 컨베이어 시스템의 원격 고장 검출)

  • Yeom, Dong-Joo;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.101-107
    • /
    • 2019
  • This paper proposes a method for detecting faults in conveyor systems used for transportation of raw materials needed in the thermal power plant and cement industries. A small drone was designed in consideration of the difficulty in accessing the industrial site and the need to use it in wide industrial site. In order to apply the system to the embedded microprocessor, hardware and algorithms considering limited memory and execution time have been proposed. At this time, the failure determination method measures the peak frequency through the measurement, detects the continuity of the high frequency, and performs the failure diagnosis with the high frequency components of noise. The proposed system consists of experimental environment based on the data obtained from the actual thermal power plant, and it is confirmed that the proposed system is useful by conducting virtual environment experiments with the drone designed system. In the future, further research is needed to improve the drone's flight stability and to improve discrimination performance by using more intelligent methods of fault frequency.

Learning algorithms for big data logistic regression on RHIPE platform (RHIPE 플랫폼에서 빅데이터 로지스틱 회귀를 위한 학습 알고리즘)

  • Jung, Byung Ho;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.911-923
    • /
    • 2016
  • Machine learning becomes increasingly important in the big data era. Logistic regression is a type of classification in machine leaning, and has been widely used in various fields, including medicine, economics, marketing, and social sciences. Rhipe that integrates R and Hadoop environment, has not been discussed by many researchers owing to the difficulty of its installation and MapReduce implementation. In this paper, we present the MapReduce implementation of Gradient Descent algorithm and Newton-Raphson algorithm for logistic regression using Rhipe. The Newton-Raphson algorithm does not require a learning rate, while Gradient Descent algorithm needs to manually pick a learning rate. We choose the learning rate by performing the mixed procedure of grid search and binary search for processing big data efficiently. In the performance study, our Newton-Raphson algorithm outpeforms Gradient Descent algorithm in all the tested data.

Active Vision from Image-Text Multimodal System Learning (능동 시각을 이용한 이미지-텍스트 다중 모달 체계 학습)

  • Kim, Jin-Hwa;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.795-800
    • /
    • 2016
  • In image classification, recent CNNs compete with human performance. However, there are limitations in more general recognition. Herein we deal with indoor images that contain too much information to be directly processed and require information reduction before recognition. To reduce the amount of data processing, typically variational inference or variational Bayesian methods are suggested for object detection. However, these methods suffer from the difficulty of marginalizing over the given space. In this study, we propose an image-text integrated recognition system using active vision based on Spatial Transformer Networks. The system attempts to efficiently sample a partial region of a given image for a given language information. Our experimental results demonstrate a significant improvement over traditional approaches. We also discuss the results of qualitative analysis of sampled images, model characteristics, and its limitations.