• Title/Summary/Keyword: Classification methods

Search Result 5,282, Processing Time 0.034 seconds

High Accuracy Classification Methods for Multi-Temporal Images

  • Hong, Sun Pyo;Jeon, Dong Keun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.3-8
    • /
    • 1997
  • Three new classification methods for multi temporal images are proposed. They are named as a likelihood addition method, a likelihood majority method and a Dempster-Shafer's rule method. Basic strategies using these methods are to calculate likelihoods for each temporal data and to combine obtained likelihoods for final classification. These three methods use different combining algorithms. From classification experiments, following results were obtained. The method based on Dempster-Shafer's rule of combination showed about 12% improvement of classification accuracies compared to a conventional method. This method needed about 16% more processing times than that of a conventional method. The other two proposed method showed 1% to 5% increase of classification accuracies. However processing times of these two proposed method showed 1% to 5% increase of classification accuracies. However processing times of these two methods are almost the same with that of a conventional method. Among the newly proposed three methods, the Dempster-Shafer's rule method showed the highest classification accuracies with more processing time than those of other methods.

  • PDF

Comparison Study of Multi-class Classification Methods

  • Bae, Wha-Soo;Jeon, Gab-Dong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.377-388
    • /
    • 2007
  • As one of multi-class classification methods, ECOC (Error Correcting Output Coding) method is known to have low classification error rate. This paper aims at suggesting effective multi-class classification method (1) by comparing various encoding methods and decoding methods in ECOC method and (2) by comparing ECOC method and direct classification method. Both SVM (Support Vector Machine) and logistic regression model were used as binary classifiers in comparison.

Classification via principal differential analysis

  • Jang, Eunseong;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.135-150
    • /
    • 2021
  • We propose principal differential analysis based classification methods. Computations of squared multiple correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine principal differential analysis results with the logistic regression for binary classification. In the numerical study, we compare the principal differential analysis based classification methods with functional principal component analysis based classification. Various scenarios are considered in a simulation study, and principal differential analysis based classification methods classify the functional data well. Gene expression data is considered for real data analysis. We observe that the PDA score based method also performs well.

From Theory to Implementation of a CPT-Based Probabilistic and Fuzzy Soil Classification

  • Tumay, Mehmet T.;Abu-Farsakh, Murad Y.;Zhang, Zhongjie
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1466-1483
    • /
    • 2008
  • This paper discusses the development of an up-to-date computerized CPT (Cone Penetration Test) based soil engineering classification system to provide geotechnical engineers with a handy tool for their daily design activities. Five CPT soil engineering classification systems are incorporated in this effort. They include the probabilistic region estimation and fuzzy classification methods, both developed by Zhang and Tumay, the Schmertmann, the Douglas and Olsen, and the Robertson et al. methods. In the probabilistic region estimation method, a conformal transformation is used to determine the soil classification index, U, from CPT cone tip resistance and friction ratio. A statistical correlation is established between U and the compositional soil type given by the Unified Soil Classification System (USCS). The soil classification index, U, provides a soil profile over depth with the probability of belonging to different soil types, which more realistically and continuously reflects the in-situ soil characterization, which includes the spatial variation of soil types. The CPT fuzzy classification on the other hand emphasizes the certainty of soil behavior. The advantage of combining these two classification methods is realized through implementing them into visual basic software with three other CPT soil classification methods for friendly use by geotechnical engineers. Three sites in Louisiana were selected for this study. For each site, CPT tests and the corresponding soil boring results were correlated. The soil classification results obtained using the probabilistic region estimation and fuzzy classification methods are cross-correlated with conventional soil classification from borings logs and three other established CPT soil classification methods.

  • PDF

Comparison of Classification rate of PD Sources (부분방전원 분류기법의 패턴분류율 비교)

  • Park, Seong-Hee;Lim, Kee-Joe;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.566-567
    • /
    • 2005
  • Until now variable pattern classification methods have been introduced. So, variable methods in PD source classification were applied. NN(neural network) the most used scheme as a PD(partial discharge) source classification. But in recent year another method were developed. These methods is present superior to NN in the field of image and signal process function of classification. In this paper, it is show classification result in PD source using three methods; that is, BP(back-propagation), ANFIS(adaptive neuro-fuzzy inference system), PCA-LDA(principle component analysis-linear discriminant analysis).

  • PDF

Logistic Regression Classification by Principal Component Selection

  • Kim, Kiho;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2014
  • We propose binary classification methods by modifying logistic regression classification. We use variable selection procedures instead of original variables to select the principal components. We describe the resulting classifiers and discuss their properties. The performance of our proposals are illustrated numerically and compared with other existing classification methods using synthetic and real datasets.

Performance Comparison of Classication Methods with the Combinations of the Imputation and Gene Selection Methods

  • Kim, Dong-Uk;Nam, Jin-Hyun;Hong, Kyung-Ha
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1103-1113
    • /
    • 2011
  • Gene expression data is obtained through many stages of an experiment and errors produced during the process may cause missing values. Due to the distinctness of the data so called 'small n large p', genes have to be selected for statistical analysis, like classification analysis. For this reason, imputation and gene selection are important in a microarray data analysis. In the literature, imputation, gene selection and classification analysis have been studied respectively. However, imputation, gene selection and classification analysis are sequential processing. For this aspect, we compare the performance of classification methods after imputation and gene selection methods are applied to microarray data. Numerical simulations are carried out to evaluate the classification methods that use various combinations of the imputation and gene selection methods.

Missing Value Imputation based on Locally Linear Reconstruction for Improving Classification Performance (분류 성능 향상을 위한 지역적 선형 재구축 기반 결측치 대치)

  • Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.276-284
    • /
    • 2012
  • Classification algorithms generally assume that the data is complete. However, missing values are common in real data sets due to various reasons. In this paper, we propose to use locally linear reconstruction (LLR) for missing value imputation to improve the classification performance when missing values exist. We first investigate how much missing values degenerate the classification performance with regard to various missing ratios. Then, we compare the proposed missing value imputation (LLR) with three well-known single imputation methods over three different classifiers using eight data sets. The experimental results showed that (1) any imputation methods, although some of them are very simple, helped to improve the classification accuracy; (2) among the imputation methods, the proposed LLR imputation was the most effective over all missing ratios, and (3) when the missing ratio is relatively high, LLR was outstanding and its classification accuracy was as high as the classification accuracy derived from the compete data set.

An Application of Spatial Classification Methods for the Improvement of Classification Accuracy (분류정확도 향상을 위한 공간적 분류방법의 적용)

  • Jeong, Jae-Joon;Lee, Byoung-Kil;Kim, Hyung-Tae;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.9 no.2 s.18
    • /
    • pp.37-46
    • /
    • 2001
  • Spectral pattern recognition techniques are most used in classification of remotely sensed data. Yet, in any real image, adjacent pixels are related, because imaging sensors acquire significant portions of energy from adjacent pixels. And, with the continued improvement in the spatial resolution of remote sensing systems, another spatial pattern recognition approach is must considered. In this study, we aim to show the potentiality of spatial classification methods through comparing the accuracies of spectral classification methods and those of spectral classification methods. By the comparisons between the two methods, classification accuracies of 6 different spatial classification methods are higher than that of spectral classification method by 2-6% or so. Additionally, we can show it statistically through the classification experiments with different band combinations.

  • PDF

On the Use of Modified Adaptive Nearest Neighbors for Classification (수정된 적응 최근접 방법을 활용한 판별분류방법에 대한 연구)

  • Maeng, Jin-Woo;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1093-1102
    • /
    • 2010
  • Even though the k-Nearest Neighbors Classification(KNNC) is one of the popular non-parametric classification methods, it does not consider the local features and class information for each observation. In order to overcome such limitations, several methods have been developed such as Adaptive Nearest Neighbors Classification(ANNC) and Modified k-Nearest Neighbors Classification(MKNNC). In this paper, we propose the Modified Adaptive Nearest Neighbors Classification(MANNC) that employs the advantages of both the ANNC and MKNNC. Through a real data analysis and a simulation study, we show that the proposed MANNC outperforms other methods in terms of classification accuracy.