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Logistic Regression Classification by Principal
Component Selection
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Abstract
We propose binary classification methods by modifying logistic regression classification. We use variable
selection procedures instead of original variables to select the principal components. We describe the result-
ing classifiers and discuss their properties. The performance of our proposals are illustrated numerically and
compared with other existing classification methods using synthetic and real datasets.

Keywords: Logistic regression classification, principal components, sparse regression.

1. Introduction

Logistic regression (LR) classification is a popular statistical methodology for binary classification
problems, and has been widely applied to numerous application domains. Popular statistical classifi-
cation methods (other than LR classification) include linear discriminant analysis (LDA) and a support
vector machine (SVM) as described in standard statistical machine learning textbooks (Bishop, 2006;
Hastie et al., 2009; Murphy, 2012).

LR classification is based on logistic regression where the binary response variable is the class
label. Suppose y is a binary variable, taking values {0, 1} depending on its class, and x € R” is a
feature vector having p attributes for the sample. The classifier from LR classification is given as
f(x) = a + xT B, so that classification is made as ‘0’ class if f(x) < 0 and ‘1’ class if f(x) > 0. The
parameters of the classifier are obtained by minimizing the negative Bernoulli likelihood:

(&, [3) = arg min L(a, B)
a, B

with L(a, B) = - X0, (e, B;yi, x;) and l(a, B;yi, X;) = yi(a + xl.T,B) —In(1 + e‘“"irﬂ). To avoid overfit-
ting, penalized logistic regression (PLR) classification is often used. PLR imposes a penalty on large
fluctuations on B and thus on the fitted classifier. This approach is most valuable in high-dimensional
situations. Types of penalty functions are optionally selective depending on the purpose of analysis.
Another direction to avoid overfitting and/or high-dimensionality is to reduce the variability of the
classifier estimate using dimension reduction techniques such as PC regression in the regression prob-
lems. A straightforward analogy for LR classification is to use the major principal components (PCs)
as covariates in LR classification and throw away the remaining minor PCs; however, a drawback is
that it may lead to poor classification in the test dataset because some of minor PCs can be strongly
associated with class labels and are not used to construct classifiers.
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In this work, we propose a simple modification for PC-regression-like LR classification. Rather
than a few major PCs, we select PCs by logistic regression with sparsity-inducing penalties. Thus, a
sparse logistic regression procedure automatically locates the PCs that have discriminating power as
covariates even though they are not considered major PCs. This simple approach is effective to reduce
the misclassification rate produces a principal subspace where the class information is maximized.
In Section 2, we describe our new classifiers and their properties. Numerical studies are provided in
Section 3 with a comparison of other classification rules. The conclusion discusses possible extensions
to multi-class classification.

2. Method
T\T

Suppose X = (xlT, xg ,....X, )" is the matrix of n X p, whose columns represent p feature variables
and rows represent n samples. We assume that all columns are centered. Principal components are
derived from the linear transformation Z = XV, where V € R”*" with r = rank(X) is the orthogonal
matrix of principal component loadings. Thus, principal components for the i sample is given by
z; = VIx; fori = 1,2, ...,n, where z; is the ith row of Z € R™". The linear classifier can be rewritten

in terms of principal components as
fX)=a+x'B=a+1"y,

where ¥ = VI8 € R”. Our new proposal is to minimize the negative penalized Bernoulli likelihood
with sparsity-inducing penalty pen,(y) on the coefficient vector y of principal components. Thus, the
new classifier we suggest is f(x) = & + x’ V¥ from

(&,¥) = argmin L(a, y) + pen,(y).
@y
The sparsity-inducing penalty forces some principal component coefficients to be zero if they do not
contribute to class separation. Minor principal components may survive penalization if they are still
helpful for class separation. The resulting classification rule implies the following properties:

1. Unlike PC regression scheme, where a few major principal components are included in the set of
covariates, important minor principal components are retained if they are meaningful in classifi-
cation.

2. Similar with LDA or penalized LDA, low dimensional subspace (principal subspace) can be found
and its basis (principal component directions) delivers how the original variables contribute to
create a subspace where maximal class separation is possible (for the reduced-rank LDA, refer to
Section 4.3.3. in Hastie et al., 2009).

3. The dimensionality of principal subspace (the number of PCs selected) is automatically selected
through a sparse logistic regression procedure. Moreover, such dimension can be even larger than
the number of classes (2 for two-classification). In contrast, LDA or penalized LDA find the
subspace of dimension G — 1 for G-class classification (see Chapter 12 in Hastie et al., 2009).
This implies that our proposal may have a better position than LDA when classes have compli-
cated shapes in the data space (e.g., samples from the single class are generated from mixture
distribution.)

4. The subspace from our proposal has an interpretational advantage in that its bases are PC loading
vectors. Each direction explains its own mode of variability of data space as principal component
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analysis does. The orthogonality of basis makes its interpretation easy, while the direction from
LDA are not orthogonal in the data space. In genome-wide association studies, genetic variations
are highly associated with population stratification (a systematic difference in genetic variables
due to different ancestry) and such variations are well represented by principal components (Pat-
terson et al., 2006; Price et al., 2006). Consequently, a disease status of interest classified with
some principal components associated with population stratification may be explained by ethnic
difference.

In this study, we consider 2 types of sparsity-inducing penalties: (1) Lasso penalty, pen,(y) =
/lZ’j’:l ly;l (Tibshirani, 1996), and (2) SCAD penalty, pen,(y) = Zle pa(lyjl;a) with pi(x;a) =
2AxI(x < A) = {(x* = 2adx + A%)/(a — )}[(A < x < ad) + (a + 1)A%1(x > ad) (Fan and Li, 2005). We
name the classifiers associated with 2 types of penalties as PPCLR-L and PPCLR-S respectively.

3. Numerical Results
3.1. Synthetic data analysis

We tested PPCLR-L and PPCLR-S and compared them with other existing methods using synthetic
datasets. In the simulation, two random vectors x; and X, were generated from the multivariate normal
distributions with N,(u;, X1) and N,(u,, Xo) respectively. First, consider the covariance matrix X =
(2,‘ j) with

1

= (G,j=12,...,
TS (i, j p)

ij

as in Kondylis and Whittaker (2008). This covariance matrix X represents that there exists a high
correlation between the variables. Its spectral decomposition is

)4
¥ = PAP” = Z Apep;
=1

where A = diag(4y,...,4,) and P = (py, ..., p,) with the ordered eigenvalues 4; > --- > 4, > 0 and
the associated eigenvectors py, ..., p,. Now we consider 4 setups for data generation:

(1) Casel: X =Xy =X and y; = pu, u, = —p with
u= 212:1 \//l_fp{’

\jzlgzl Ae

where k is the minimum number of major eigenvalues whose sum takes up more than 90% of total
variability.

(2) Case2: X; =X, =X and y; = u, g, = —u with
U= ZZ:kH \//l_fpt’

p
t=ke1 At

where k is the minimum number of minor eigenvalues whose sum takes up more than 10% of
total variability.
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(3) Case3: X =X, X, = PA,P" where
Ay =diag(d,, Ap-1,A3,...,Ap2, A2, A1),

and y;, = u, p, = —p with

= A+ /lppl + /A2 + /lp—1p2

\//ll + Ay + /lp—l + /11,

(4) Case4: X = X, X, = PA,PT with A, = diag(4,,) where 7 denotes the random permutation of
{1,2,..., p} and 7, is the {th element of that permutation. Define the pooled covariance of X; and
Y, as X' = p1 X + pX, where p; and p, are sample proportions of x; and x; respectively. Let
p; be the eigenvector associated with the first eigenvalue of X*. Then, we set u; = pand p, = —u
with u = pJ.

Case 1 and Case 2 assume the common covariance for both classes. For Case 1, means for two
classes locate along the direction of the weighted average of major eigenvectors, while in Case 2,
means are on the direction of the weighted average of minor eigenvectors. Thus, we expect that
PCLR (see the below for its definition) is still good in Case 1 and performs badly in Case 2. Case
3 and Case 4 have more complicated situations: Case 3 has different covariances and the means lie
on the direction of the weighted average of two specific eigenvectors. Case 4 also assume different
covariances and the means locate on the direction of the first eigenvector of the pooled covariance.

From the above simulation setups, we generated n/2 samples from the distributions of x; and x,
equally. The number of samples (n) and variables (p) we considered are: (1) large sample case of p =
10, n = 100, 200, 400, 800, 1600 and (2) high dimensional case of n = 100, p = 100, 200, 400, 800, 1600.

For the comparison, 4 methods are also applied to the simulated datasets as well as 2 proposals
(PPCLR-L and PPCLR-S). 4 competitors are:

e PCLR : logistic regression classification with the major principal components that explain a 90%
variability of feature space.

e PLR : penalized logistic regression classification with ridge penalty (Friedman et al., 2008).
glmnet package was used.

e PLDA : penalized linear discriminant analysis with ridge penalty (Hastie ez al., 1995). An mda
package was used.

e SVM : support vector machine with radial basis kernel. A kernlab package was used.

We applied our proposals and 4 competitors to the simulated dataset to compare them based on test
misclassification rate. For all methods (except for PCLR), 10-fold cross-validation chose the optimal
penalty parameter associated with the penalty functions. The test misclassification rate is evaluated
as a cross-validation error rate. To obtain the consistent results, we iterated the same simulation
1,000 times and provided the averages of 1,000 test misclassification rates in Figure 1 and Figure 2 as
graphical summaries.

Figure 1 indicates that the test misclassification rates from all methods tend to decrease as the
sample size increases. In Case 1 and Case 2, PPCLR-L and PPCLR-S outperform other competitors;
however, SVM has the best performance among other methods (including our proposals in Case 3
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Figure 1: Average test misclassification rate with p = 10 (Top-left panel is for Case 1, top-right is for Case 2,
bottom-Ieft is for Case 3, and bottom-right is for Case 4)

and Case 4) because SVM produces flexible classifiers that are best when the covariance structure
of two classes are not homogeneous. SVM is the best in Case 3 and Case 4; however, PPCLR-L
and PPCLR-S are the second best among others. Figure 2 shows the results for a high-dimensional
situation, where test misclassification rates from all methods increase as dimensionality increases.
However, their trends differ by methods. SVM is still good in p = 100 and comparable to sample
size n = 100; however, but it quickly deteriorates as p increases. For Case 1 and Case 2, PPCLR-L,
PPCLR-S, and PLDA are relatively better than others and seem comparable to each other. However,
PPCLR-L and PPCLR-S tend to have the smallest test misclassification rates when the dimension is
very large (p = 1600). The simulation studies suggest that PPCLR-L and PPCLR-S work well in
high-dimensional scenarios. We also notice that PPCLR-S seems to indicate better performance than
PPCLR-L even though the difference looks marginal. We guess that oracle property (unbiasedness
of ¥) of SCAD penalty in variable selection under regression problems carries over to PPCLR-S to
enhance the classification. In addition, we applied PLDA and PLR with a Lasso penalty to the same
simulated dataset as well. Their results (not shown here) are similar to the the ridge penalty case; in
addition, the priority of PPCLR-L and PPCLR-S is unchanged. We also note that the sparse logistic
regression classification using original variables (SPLR) was applied to the simulated data sets and
its results (not shown here) are comparable to PPCLR. The performance comparison between PPCLR
and SPLR highly depends on the situations where the data is generated; however, we do not consider
a PPCLR and SPLR comparison since it is not the primary interest of this study
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Figure 2: Average test misclassification rate with n = 100 (Top-left panel is for Case 1, top-right is for Case 2,

bottom-Ieft is for Case 3, and bottom-right is for Case 4)

Table 1: Description of real datasets for binary classification.

Data Samples (1) Dimensions (p) Type / Application Source

Ionosphere 351 34 signal / physics UcCl

Sonar 208 60 signal / material science KEEL

Spambase 4597 57 text / text mining KEEL

Spectheart 297 44 image / medical science KEEL

WDBC 569 30 image / medical science KEEL

Chin 118 22215 microarray / medical science datamicroarray package
Chowdary 104 22283 microarray / medical science datamicroarray package
Gravier 168 2905 microarray / medical science datamicroarray package
Gordon 181 12533 microarray / medical science datamicroarray package
Singh 102 12600 microarray / medical science datamicroarray package
Shipp 58 6817 microarray / medical science datamicroarray package

3.2. Real data analysis

We applied all methods to several real datasets from various application domains (see Table 1). We
collected 11 datasets from UCI machine learning repository (Bache and Lichman, 2013), the data
repository from KEEL webpage [http://www.keel.es] (Alcald-Fdez et al., 2011), and datamicroarra
y package from GitHub [http://github.com]. All datasets consist of 2 classes and are suitable for the
binary classification task. Sample size and dimensionality are radically different across datasets.
Table 2 summarizes the test error rates from all methods considered in this paper that added the
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Table 2: Misclassification rates (%).

Data PPCLR-L PPCLR-S PCLR PLR SPLR PLDA-R SVM
Tonosphere 14.53 15.10 14.27 14.81 15.67 14.25 513
Sonar 20.67 21.63 24.05 25.00 24.52 22.07 18.24
Spambase 7.22 7.33 33.89 9.25 7.48 11.46 6.74
Spectheart 18.35 18.73 20.90 18.35 20.60 24.00 20.61
WDBC 3.34 4.04 9.66 3.69 2.64 4.56 2.64
Chin 11.86 11.02 30.53 14.41 11.86 - 14.55
Chowdary 3.85 2.88 21.27 3.85 3.85 - 3.00
Gravier 23.81 26.19 31.51 25.00 24.40 - 26.80
Gordon 0.00 1.66 1.08 1.66 1.66 - 222
Singh 6.86 12.75 14.91 8.82 7.84 - 13.64
Shipp 10.39 6.49 8.75 6.49 5.19 - 21.96

logistic regression classification with a lasso that also used the original variables (SPLR). The test
error rate is evaluated as a cross-validation error rate similar to the synthetic data analysis. PLDA
using mda package often failed to produce the result when the dimension of data is larger than 2,000.
SVM performs best among all methods when the sample size is larger than the dimension (as observed
in the simulation studies). However, PPCLR-L and PPCLR-S show superior performance to other
methods when the dimension exceeds the sample size. This indicates PPCLR-L and PPCLR-S can be
the best option for high-dimensional binary classification problems (as observed in the synthetic data
analysis).

4. Conclusion

We propose binary classification methods by selecting principal components in logistic regression
classification. Their performance was illustrated and compared with existing methods that used sim-
ulated datasets under various situations and several real datasets from various application domains.
Such numerical studies confirm that our proposals are competitive, especially for high-dimensional
binary classification. We note that our numerical comparisons are not comprehensive because many
supervised learning approaches that used principal component analysis (Jolliffe, 2004) and partial
least squares (Barker and Rayens, 2003) are not considered and compared in this study.

In this manuscript, we focus exclusively on a binary classification problem, but this idea can be
straightforwardly extended to multi-class classification problem as well. For G-class classification, the
multinomial distribution for class label is appropriate. For y € {1,2,...,G}, the success probabilities
of multinomial distribution are

exp (a/g + zTyg)
1+ 27" exp (@ +27y))
1
G-1 T ’
L+ 30 exp(ar +27y))

py=gX=x)= forg=1,...,G -1,

py=6GX=x)=

where z = V'x and V is the orthogonal PC loading matrix. The negative log likelihood is L(«,y) =
-2 Zgzl YigP(Vig = 11X = x;) with new variable y;, = 1 if y; = g and 0 otherwise. Penalty function
becomes Zngl pen, (y,). This can be easily implemented as described in Section 4.4.5 in Hastie ef
al. (2009) or Section 4.3.4 in Bishop (2006). In the multi-class classification, PC loadings selected by
the procedure may reveal the importance of variables in classification between some specific classes;
consequently, this is an additional interpretational advantage in classification problems and represents
a direction for future research.
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