• Title/Summary/Keyword: Class-E Power amplifier

Search Result 62, Processing Time 0.03 seconds

Concurrent Dual-Band Class-E Power Amplifier Using a Multi-Harmonic Matching Network (Multi-Harmonic Matching Network을 이용한 동시-이중 대역 Class-E 전력 증폭기)

  • Park, Seung-Won;Jeon, Sanggeun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.401-410
    • /
    • 2014
  • This paper presents a high-efficiency concurrent dual-band Class-E power amplifier(PA) that is based on a multi-harmonic matching network(MHMN). The proposed MHMN controls the impedance at 1.3 GHz, 2.1 GHz, and their second and third harmonics, respectively, by using transmission lines only rather than switches or lumped components. The dual-band Class-E PA is implemented using Avago ATF-50189 GaAs p-HEMT. The PA exhibits a measured output power of 27.1 dBm and 25.7 dBm, a power gain of 6.1 dB and 4.7 dB, and a drain efficiency of 71.2 % and 60.1 % at 1.3 GHz and 2.1 GHz, respectively.

A Class E Power Oscillator for 6.78-MHz Wireless Power Transfer System

  • Yang, Jong-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.220-225
    • /
    • 2018
  • A class E power oscillator is demonstrated for 6.78-MHz wireless power transfer system. The oscillator is designed with a class E power amplifier to use an LC feedback network with a high-Q inductor between the input and the output. Multiple capacitors are used to minimize the variation of the oscillation frequency by capacitance tolerance. The gate and drain bias voltages with opposite characteristics to make the frequency shift of the oscillator are connected in a resistance distribution circuit located at the output of the low drop-out regulator and supplied bias voltages for class E operation. The measured output of the class E power oscillator, realized using the co-simulation, shows 9.2 W transmitted power, 6.98 MHz frequency and 86.5% transmission efficiency at the condition with 20 V $V_{DS}$ and 2.4 V $V_{GS}$.

A Study on the Operation of the Class E High-Efficiency Tuned Power Amplifier (E급고효율동조전력증폭기의 동작특성에 관한 연구)

  • 김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.3
    • /
    • pp.132-139
    • /
    • 1984
  • This paper presents an exant analysis of the class E tuned power amplifier with a shunt inductor. The following performance parameters are determined for optimum operation with any switch duty ratio: the collector current and voltage waveforms, the peak values of collector current and voltage, the output power, the power output capability, and the values of the load network elements. The analysis shows that the maximum power output capability occurs at a duty ratio of 50 percent. The measured collector efficiency of experiments is 93 percent with 0.93W at 1MHz. This amplifier is especially applicable at portable transmitters because its colletor efficiency is extremely high.

  • PDF

Size Reduction of a Quasi Class-E High Power Amplifier Using Defected Ground Structure (결함 접지 구조를 이용한 유사 E급 전력 증폭기의 소형화)

  • Choi, Heung-Jae;Jeong, Yong-Chae;Lim, Jong-Sik;Jung, Young-Bae;Eom, Soon-Young;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • In this work, a reduced size 20W quasi class-E Power Amplifier(PA) with defected ground structure load-network is presented for WCDMA base station application. Harmonic impedances required for the class E operation are satisfied by applying the dumbbell and the asymmetric spiral DGS. Open impedance for 2nd harmonic frequency which has the highest power and nearly short impedances for other higher order harmonics are provided by the proposed DGS load-network. The maximum Power Added Efficiency(PAE) of 70.2 % at the output power of 43.1 dBm with the saturated power gain of 12.7 dB is achieved by the proposed quasi class-E PA, which is comparable to the performance of the reference class-E PA. Total size of the proposed class-E PA is only $50{\times}50\;mm^2$ and much smaller than the conventional class-E PA that is loaded with a number of open stubs.

Analysis of the Gate Bias Effects of the Cascode Structure for Class-E CMOS Power Amplifier (CMOS Class-E 전력증폭기의 Cascode 구조에 대한 게이트바이어스 효과 분석)

  • Seo, Donghwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.435-443
    • /
    • 2017
  • In this study, we analyzed the effects of the common-gate transistor bias of a switching mode CMOS power amplifier. Although the most earier works occured on the transistor sizes of the cascode structure, we showed that the gate bias of the common-gate transistor also influences the overall efficiency of the power amplifier. To investigate the effect of the gate bias, we analyzed the DC power consumption according to the gate bias and hence the efficiency of the power amplifier. From the analyzed results, the optimized gate bias for the maximum efficiency is lower than the supply voltage of the power amplifier. We also found that an excessively low gate bias may degrade the output power and efficiency owing to the effects of the on-resistance of the cascode structure. To verify the analyzed results, we designed a 1.9 GHz switching mode power amplifier using $0.18{\mu}m$ RF CMOS technology. As predicted in the analysis, the maximum efficiency is obtained at 2.5 V, while the supply voltage of power amplifier is 3.3 V. The measured maximum efficiency is 31.5 % with an output power of 29.1 dBm. From the measureed results, we successfully verified the analysis.

Feedback Analysis of Transcutaneous Energy Transmission with a Variable Load Parameter

  • Yang, Tianliang;Zhao, Chunyu;Chen, Dayue
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.548-554
    • /
    • 2010
  • The transcutaneous energy transmission system (TETS) composed of a Class-E amplifier may operate at a state away from the optimum power transmission due to the load variation. By introducing the feedback-loop technique, the TETS can keep the optimum state with constant output voltage by adjusting the important design parameters, that is, the duty ratio and frequency of the driving signal and the supply voltage. The relations between these adjusted parameters and the load are investigated. The effectiveness of the feedback technique is validated through a design example with a variable load parameter. The experimental results show that the Class-E amplifier in the feedback loop can keep operating at the optimum state under the condition of up to 50 percent variation of the load value.

Received Power Regulation of LF-Band Wireless Power Transfer System Using Bias Control of Class E Amplifier (E급 증폭기의 바이어스 조정을 통한 LF-대역 무선 전력 전송시스템의 수신 전력 안정화)

  • Son, Yong-Ho;Han, Sang-Kyoo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.883-891
    • /
    • 2013
  • In wireless smart phone charging scenario, the transmitter pad is larger than the size of the receiver pad. Thus, it is important to supply a constant power to the receiver regardless of its location. In this paper, we propose a new method to regulate the receiver's power by adjusting a drain bias of class E power amplifier. The proposed LF-band wireless power transfer system is as follows: a buck converter power supply which is controlled by a pulse width modulation(PWM) IC TL494, a class E amplifier using a low cost IRF510 power MOSFET, a transmitter coil whose dimension is $16cm{\times}18cm$, a receiver coil whose dimension is $6cm{\times}8cm$, and a full bridge rectifier using Schottky diodes. A measured performance show a maximum output power of 4 W and system efficiency of 67 % if we fix the bias voltage. If we adjust the bias voltage, the received power can be maintained at a constant power of 2 W regardless of receiver pad location.

Analysis and Design of Class E High Efficiency Power Amplifier for SONAR System (Class E 기법을 이용한 소나용 고효율 전력증폭기 분석 및 설계)

  • Lee, Y.S.;Oh, K.T.;Ku, H.C.;Mok, H.S.;Hur, J.;Lee, K.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.79-81
    • /
    • 2007
  • 본 논문에서는 소나용 고출력 전력증폭기의 효율을 향상시키기 위하여 Class E 설계 기법을 분석하고 소나 시스템의 송신기에 적용하였다. Class E 기법에 기반하여 전력소자를 스위칭 모드로 동작시켜서 Zero Voltage Switching(ZVS)이 발생하도록 회로를 설계함으로써 전력 소자의 전력 손실을 최소화하고 전력 증폭기의 효율을 최대화하여 주었다. 설계된 Class E 기법의 전력 증폭기의 동작 및 타당성을 시뮬레이션을 통하여 검증하였다.

  • PDF

Implementaion of An Audio-Glass Amplifier by Controlling the Current of PWM Inverter (PWM 인버터 전류제어에 의한 오디오급 엠프 구현)

  • Lee, Eul-Jae;Kwon, Byong-Heon;Lee, Ha-Cheol;Cho, Kyu-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2704-2707
    • /
    • 1999
  • This paper presents a simple high power audio class amplifier which is controlled by a new current control switching method. Although this class D amplifier has an only one current control loop with the proposed switching method, a good performance can be obtained. And a novel switching strategy for driving stereo signal amplifier circuit with three phase full bridge is discussed also. With the simulation and experimental results, usefulness of the proposed amplifier is confirmed.

  • PDF

Dual-Band Class-F Power Amplifier based on dual-band transmission-lines (이중 대역 전송선로를 활용한 이중 대역 F급 전력 증폭기 개발)

  • Lee, Chang-Min;Park, Young-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, highly efficient dual-band class-F power amplifiers(PAs) for cellular and WLAN bands are suggested and implemented. For the first step, single-band class-F amplifiers at 840MHz, 2.4GHz are designed using commercial E-pHEMT FETs. The performance of two single band PAs are as much as 81.2% of efficiency with the output power of 24.4dBm with 840MHz PA and 93.5% of efficiency with 22.4dBm from the 2.4GHz. For the dual-band class-F PA, the harmonic controlling circuit with ideal SPDT switch was suggested. The length of transmission line is variable by a SPDT switch. As a results, the operation in 840MHz showed the peak efficiency of 60.5% with 23.5dBm, while in 2.4GHz mode the efficiency was 50.9% with the output power of 19.62dBm. Besides, it is shown that the harmonic controller of class-F above 2Ghz could be implemented on the low cost FR-4 substrate.