Browse > Article
http://dx.doi.org/10.5370/JEET.2018.13.1.220

A Class E Power Oscillator for 6.78-MHz Wireless Power Transfer System  

Yang, Jong-Ryul (Dept. of Electronic Engineering, Yeungnam University)
Publication Information
Journal of Electrical Engineering and Technology / v.13, no.1, 2018 , pp. 220-225 More about this Journal
Abstract
A class E power oscillator is demonstrated for 6.78-MHz wireless power transfer system. The oscillator is designed with a class E power amplifier to use an LC feedback network with a high-Q inductor between the input and the output. Multiple capacitors are used to minimize the variation of the oscillation frequency by capacitance tolerance. The gate and drain bias voltages with opposite characteristics to make the frequency shift of the oscillator are connected in a resistance distribution circuit located at the output of the low drop-out regulator and supplied bias voltages for class E operation. The measured output of the class E power oscillator, realized using the co-simulation, shows 9.2 W transmitted power, 6.98 MHz frequency and 86.5% transmission efficiency at the condition with 20 V $V_{DS}$ and 2.4 V $V_{GS}$.
Keywords
Class E; LC feedback network; Power oscillator; Wireless power transfer system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ke We, Debabani Choudhury and Hiroshi Matsumoto, "Wireless Power Transmission, Technology, and Applications [Scanning the issue]," in Proc. the IEEE, vol. 101, no. 6, pp. 1271-1275, Jun. 2013.   DOI
2 David W. Baarman and Joshua Schwannecke, "Understanding Wireless Power," White paper of Fulton Innovation, Dec. 2009.
3 Benjamin L. Cannon, James F. Hoburg, Daniel D. Stancil and Seth Copen Goldstein, "Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers," IEEE Trans. Power Electronics, vol. 24, no. 7, pp. 1819- 1825, Jul. 2009.   DOI
4 Jong-Ryul Yang, Hyeon-Chang Son and Young-Jin Park, "A Class E Power Amplifier with Coupling Coils for a Wireless Power Transfer System," Progress In Electromagn. Research C, vol. 35, pp. 13-22, Jan. 2013.   DOI
5 Xuezhe Wei, Zhenshi Wang and Haifeng Dai, "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Energies, vol. 7, no. 7, pp. 4316-4341, Jul. 2014.   DOI
6 Jong-Ryul Yang, Jinwook Kim and Young-Jin Park, "Class E Power Amplifiers using High-Q Inductors for Loosely Coupled Wireless Power Transfer System," J. Electr. Eng. Technol., vol. 9, no. 2, pp. 569-575, Mar. 2014.   DOI
7 Anthony N. Laskovski and Mehmet R. Yuce, "Class- E Self-oscillation for the Transmission of Wireless Power to Implants," Sensors and Actuators: A. Physical, vol. 171, no. 2, pp. 391-397, Nov. 2011.   DOI
8 Andrei Grebennikov, RF and Microwave Transistor Oscillator Design, WILEY, pp. 165-169, 2007.
9 Thuc Phi Duong and Jong-Wook Lee, "A Dynamically Adaptable Impedance-Matching System for Midrange Wireless Power Transfer with Misalignment," Energies, vol. 8, no. 8, pp. 7593-7617, Jul. 2015.   DOI
10 Jan Ebert and Marian Kazimierczuk, "Class E High- Efficiency Tuned Power Oscillator," IEEE J. Solid- State Circuits, vol. SC-16, no. 2, pp. 62-66, Apr. 1981.
11 Hiroyuki Hase, Hiroo Sekiya, Jianming Lu and Takashi Yahagi, "Novel Design Procedure for MOSFET Class E Oscillator," Proc. the 47th IEEE Int. Midwest Symp. Circuits Syst., Hiroshima, Japan, pp. 33-36, Jul. 2004.
12 Marian K. Kazimierczuk, Vladimir G. Krizhanovski, Julia V. Rassokhina and Dmitrii V. Chernov, "Class-E MOSFET Tuned Power Oscillator Design Procedure," IEEE Trans. Circuits Syst. - I. Regular Papers, vol. 52, no. 6, pp. 1138-1147, Jun. 2005.   DOI