• Title/Summary/Keyword: Class Transition Temperature

Search Result 26, Processing Time 0.019 seconds

Optical Properties according to BaO Addition for BaO-GeO2-La2O3-ZnO System (BaO-GeO2-La2O3-ZnO 계에 있어서 BaO 첨가량 변화에 따른 광학 특성)

  • Cho, Jaeyoung;Kim, Jinho;Kim, Sae-Hoon;Lee, Mijai
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.379-383
    • /
    • 2022
  • In this study, Barium Germanium glasses were prepared with a composition of xBaO-(72-x)GeO2-8La2O3-20ZnO where x = 16.0, 18.0, 20.0, 22.0 and 24.0 mol% respectively. Their physical and optical properties, such as refractiveness index, glass transition temperature (Tg), softening temperature (Ts), transmittance and Knoop hardness were studied. The results showed that refractive index, Tg, Ts and coefficient of thermal expansion (CTE) increased with increasing BaO concentration. The refractive index of all the prepared samples was observed between 1.7811 to 1.7881. The Abbe number was calculated by formula using nd (589.3 nm), nf (656.3 nm) and nc (486.1 nm) and observed to be between 38 to 40. The Abbe number of the prepared sample was similar to that of BaO and GeO2. The transmittance of the prepared glasses was observed to be between 80 ~ 82 % throughout the range from 200 nm to 800 nm. Knoop hardness divided into seven steps were measured 5 class (≥ 450 ~ < 550) of all prepared samples.

Synthesis and Characterization of Alkoxy and Alkylamino GAP Copolymer for Energetic Thermoplastic Elastomer (ETPE) (에너지화 열가소성 탄성체에 사용될 수 있는 알콕시 계열과 알킬 아민 계열 GAP Copolymer의 합성 및 분석)

  • Lim, Minkyung;Jang, Yoorim;Kim, Hancheul;Rhee, Hakjune;Noh, Sitae
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.81-87
    • /
    • 2019
  • In this study, synthetic methods and physical properties for a new class of glycidyl azide polymer (GAP) were investigated for energetic thermoplastic elastomers (ETPE). Four kinds of GAP copolymer polyols were synthesized by introducing nucleophiles such as azide, alkoxide and alkyl amine into poly(epichlorohydrin) (PECH). The GAP copolymer synthetic reaction can be evaluated as an environmental benign and efficient synthetic method due to the simultaneous one-step reaction using two kinds of nucleophiles and the complete consumption of sodium azide. The relative stoichiometric substitution ratio analysis and the progress of reaction were checked and monitored by inverse gated decoupled $^{13}C$ NMR and Fourier transform infrared (FT-IR) spectroscopy. The glass transition temperature and molecular weight were measured by differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) analysis. The synthesized poly($GA_{0.8}-butoxide_{0.2}$), poly($GA_{0.7}-n-butylamine_{0.3}$), poly($GA_{0.7}-dipropylamine_{0.3}$) and poly($GA_{0.7}-morpholine_{0.3}$) had a glass transition temperature ranged from -39 to $-26^{\circ}C$.

Parameterization of the Temperature-Dependent Development of Panonychus citri (McGregor) (Acari: Tetranychidae) and a Matrix Model for Population Projection (귤응애 온도발육 매개변수 추정 및 개체군 추정 행렬모형)

  • Yang, Jin-Young;Choi, Kyung-San;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.235-245
    • /
    • 2011
  • Temperature-related parameters of Panonychus citri (McGregor) (Acarina: Tetranychidae) development were estimated and a stage-structured matrix model was developed. The lower threshold temperatures were estimated as $8.4^{\circ}C$ for eggs, $9.9^{\circ}C$ for larvae, $9.2^{\circ}C$ for protonymphs, and $10.9^{\circ}C$ for deutonymphs. Thermal constants were 113.6, 29.1, 29.8, and 33.4 degree days for eggs, larvae, protonymphs, and deutonymphs, respectively. Non-linear development models were established for each stage of P. citri. In addition, temperature-dependent total fecundity, age-specific oviposition rate, and age-specific survival rate models were developed for the construction of an oviposition model. P. citri age was categorized into five stages to construct a matrix model: eggs, larvae, protonymphs, deutonymphs and adults. For the elements in the projection matrix, transition probabilities from an age class to the next age class or the probabilities of remaining in an age class were obtained from development rate function of each stage (age classes). Also, the fecundity coefficients of adult population were expressed as the products of adult longevity completion rate (1/longevity) by temperature-dependent total fecundity. To evaluate the predictability of the matrix model, model outputs were compared with actual field data in a cool early season and hot mid to late season in 2004. The model outputs closely matched the actual field patterns within 30 d after the model was run in both the early and mid to late seasons. Therefore, the developed matrix model can be used to estimate the population density of P. citri for a period of 30 d in citrus orchards.

Analysis of Hydrological Impact Using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam Watershed (CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Bae, Deg-Hyo;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.453-466
    • /
    • 2006
  • The objective of this study was to analyze the changes in the hydrological environment in Soyanggang-dam watershed due to climate change results (in yews 2050 and 2100) which were simulated using CCCma CGCM2 based on SRES A2 and B2. The SRES A2 and B2 were used to estimate NDVI values for selected land use using the relation of NDVI-Temperature using linear regression of observed data (in years 1998$\sim$2002). Land use change based on SRES A2 and B2 was estimated every 5- and 10-year period using the CA-Markov technique based on the 1985, 1990, 1995 and 2000 land cover map classified by Landsat TM satellite images. As a result, the trend in land use change in each land class was reflected. When land use changes in years 2050 and 2100 were simulated using the CA-Markov method, the forest class area declined while the urban, bareground and grassland classes increased. When simulation was done further for future scenarios, the transition change converged and no increasing trend was reflected. The impact assessment of evapotranspiration was conducted by comparing the observed data with the computed results based on three cases supposition scenarios of meteorological data (temperature, global radiation and wind speed) using the FAO Penman-Monteith method. The results showed that the runoff was reduced by about 50% compared with the present hydrologic condition when each SRES and periods were compared. If there was no land use change, the runoff would decline further to about 3$\sim$5%.

Properties on the Strength of Polymer Concrete Using Nano MMT-UP Composite (나노 MMT-폴리머 복합체를 이용한 폴리머 콘크리트의 강도 특성)

  • Jo, Byung-Wan;Moon, Rin-Gon;Park, Seung-Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.761-766
    • /
    • 2006
  • Polymer composite are increasingly considered as structural components for use in civil engineering, on account of their enhanced strength-to-weight ratios. Unsaturated polyester (UP) resin have been widely used for the matrix of composites such as FRP and polymer composite, due to its excellent adhesive. Polymer nanocomposites are new class of composites derived from the nano scale inorganic particles with dimensions typically in the range of 1 to 1000 nm that are dispersed in the polymer matrix homogeneously. Owing to the high aspect ratio of the fillers, mechanical, thermal, flame, retardant and barrier properties are enhanced without significant loss of clarity, toughness or impact strength. To prepare the MMT (Montmorillonite)-UP exfoliated nanocomposites, UP was mixed with MMT at $60^{\circ}C$ for 3 hours by using pan mixer. XRD (X-ray diffraction) pattern of the composites and TEM (Transmission Electron Micrographs) showed that the interlayer spacing of the modified MMT were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified MMT were higher than those of the composites with unmodified MMT. The thermal stability of MMT-UP nanocomposite is better than that of pure UP, and its glass transition temperature is higher than that of pure UP. The polymer concrete made with MMT-UP nanocomposite has better mechanical properties than of pure UP. Therefore, it is suggested that strength and elastic modulus of polymer concrete was found to be positively tensile strength and tensile modulus of the MMT-UP nanocomposites.

Direct Bonding of Si(100)/NiSi/Si(100) Wafer Pairs Using Nickel Silicides with Silicidation Temperature (열처리 온도에 따른 니켈실리사이드 실리콘 기판쌍의 직접접합)

  • Song, O-Seong;An, Yeong-Suk;Lee, Yeong-Min;Yang, Cheol-Ung
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.556-561
    • /
    • 2001
  • We prepared a new a SOS(silicon-on-silicide) wafer pair which is consisted of Si(100)/1000$\AA$-NiSi Si (100) layers. SOS can be employed in MEMS(micro- electronic-mechanical system) application due to low resistance of the NiSi layer. A thermally evaporated $1000\AA$-thick Ni/Si wafer and a clean Si wafer were pre-mated in the class 100 clean room, then annealed at $300~900^{\circ}C$ for 15hrs to induce silicidation reaction. SOS wafer pairs were investigated by a IR camera to measure bonded area and probed by a SEM(scanning electron microscope) and TEM(transmission electron microscope) to observe cross-sectional view of Si/NiSi. IR camera observation showed that the annealed SOS wafer pairs have over 52% bonded area in all temperature region except silicidation phase transition temperature. By probing cross-sectional view with SEM of magnification of 30,000, we found that $1000\AA$-thick uniform NiSi layer was formed at the center area of bonded wafers without void defects. However we observed debonded area at the edge area of wafers. Through TEM observation, we found that $10-20\AA$ thick amourphous layer formed between Si surface and NiSix near the counter part of SOS. This layer may be an oxide layer and lead to degradation of bonding. At the edge area of wafers, that amorphous layer was formed even to thickness of $1500\AA$ during annealing. Therefore, to increase bonding area of Si NiSi ∥ Si wafer pairs, we may lessen the amorphous layers.

  • PDF