Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.9.379

Optical Properties according to BaO Addition for BaO-GeO2-La2O3-ZnO System  

Cho, Jaeyoung (Display Materials Center, Korea Institute of Ceramic Engineering & Technology)
Kim, Jinho (Display Materials Center, Korea Institute of Ceramic Engineering & Technology)
Kim, Sae-Hoon (Department of Ceramic Engineering, Gangneung Wonju National University)
Lee, Mijai (Display Materials Center, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Korean Journal of Materials Research / v.32, no.9, 2022 , pp. 379-383 More about this Journal
Abstract
In this study, Barium Germanium glasses were prepared with a composition of xBaO-(72-x)GeO2-8La2O3-20ZnO where x = 16.0, 18.0, 20.0, 22.0 and 24.0 mol% respectively. Their physical and optical properties, such as refractiveness index, glass transition temperature (Tg), softening temperature (Ts), transmittance and Knoop hardness were studied. The results showed that refractive index, Tg, Ts and coefficient of thermal expansion (CTE) increased with increasing BaO concentration. The refractive index of all the prepared samples was observed between 1.7811 to 1.7881. The Abbe number was calculated by formula using nd (589.3 nm), nf (656.3 nm) and nc (486.1 nm) and observed to be between 38 to 40. The Abbe number of the prepared sample was similar to that of BaO and GeO2. The transmittance of the prepared glasses was observed to be between 80 ~ 82 % throughout the range from 200 nm to 800 nm. Knoop hardness divided into seven steps were measured 5 class (≥ 450 ~ < 550) of all prepared samples.
Keywords
$bao-geo_2$ glass; $t_g$; knoop hardness; abbe number;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. S. Lim, B. S. Kim, J. H. Lee, J. H. Lee and J. J. Kim, J. Eur. Ceram. Soc., 27, 825 (2007).
2 SCHOTT, TIE-35: Transmittance of optical glass, 2020 from SCHOTT Technical Information database
3 HOYA GROUP Optics Division, Mechanical Properties On the Web. Retrieved July 1, 2022 from https://www.hoyaopticalworld.com
4 M. N. Polyanskiy, Refractive Index INFO On the Web. Retrieved July 1, 2022 from https://refractiveindex.info
5 R. D. Shannon, R. C. Shannon, O. Medenbach and R. X. Fischer, J. Phys. Chem. Ref. Data, 31, 931 (2002).
6 D. L. Wood, K. Nassau and D. L. Chadwick, Appl. Opt., 21, 4276 (1982).
7 P. Hartmann, R. Jedamzik, S. Reichel and B. Schreder, Appl. Opt., 49, D157 (2010).
8 V. Greco, G. Molesini and F. Quercioli, Appl. Opt., 32, 6219 (1993).
9 E. Hecht, Optics, 4th ed., p.1, Pearson Education, India (2006).
10 H. Bach and N. Neuroth, eds., The Properties of Optical Glass, Springer, p.169, United States (1998).
11 Poulain and Marcel, J. Non-Cryst. Solids, 56, 1 (1981).
12 A. Zakery, Introduction to Chalcogenide Glasses. In: Optical Nonlinearities in Chalcogenide Glasses and their Applications., p.726, Springer Series in Optical Science, Berlin (2007).
13 Schott, The Catalog Optical Glass, Schott Optical Glass Inc., Pa. No10000 (1987).
14 S. Kohara, K. Suzuya, K. Takeuchi, C.-K. Loong, M. Grimsditch, J. K. R. Weber, J. A. Tangeman and T. S. Key, Science, 303, 1649 (2004).
15 Z. Mao, J. Duan, X. Zheng, M. Zhang, L. Zhang, H. Zhao and J. Yu, Ceram. Int., 41, S51 (2015).
16 M. Micoulaut, L. Cormier and G. Henderson, J. Condens. Matter Phys., 18, R753 (2006).
17 S. Valligatla, A. Chiasera, N. Bazzanella, L. Lunelli, A. Miotello, M. Mazzola, D. N. Rao and M. Ferrari, IOP Conf. Ser.: Mater. Sci. Eng. (discontin.), 73, 012006 (2015).   DOI
18 S. Sebastiani, G. N. Conti, S. Pelli, G. C. Righini, A. Chiasera, M. Ferrari and C. Tosello, Opt. Express, 13, 1696 (2005).
19 A. V. Anan'ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, V. A. Solovyev, J Non Cryst Solids, 354, 3049 (2008).
20 J. T. Littleton and E. H. Roberts, J. Opt. Soc. Am., 4, 224 (1920).