This study analyzed convergent factors related to self-leadership of female freshmen in health majors studying TOEIC. The survey was conducted from April 29, 2019 to May 10, 2019 using unregistered self-administered questionnaire for 201 female freshmen in health majors and they were randomly selected from TOEIC class in college located in J city. The results of hierarchical multiple regression analysis show the following. The self-leadership of respondents turned out to be significantly higher in following groups: a group in which self-competence is higher, a group in which subdivision task self-efficacy and coping self-efficacy is higher, and a group in which subdivision chance of locus control from locus of control is lower. Their explanatory power was 49.7%. The results of the study indicate that the efforts to manage self-competence, self-efficacy, and locus of control are required to improve the self-leadership of female freshmen in health majors studying TOEIC. These results can be used for academic counseling guidance to enhance self-leadership of female freshmen in health majors studying TOEIC. In the future research, it is necessary to establish and analyze a structural equation model that affects self-leadership of male and female college students in health majors studying TOEIC.
Park, Kyung-Eun;Lee, Sang-Gu;Ham, Yoonmee;Lee, Jae Hwa
Communications of Mathematical Education
/
v.33
no.3
/
pp.163-180
/
2019
This study introduces a development of calculus contents which makes to understand the main concepts of calculus in a short period of time and to enhance problem solving and computational thinking for complex problems encountered in the real world for college freshmen with diverse backgrounds. As a concrete measure, we developed 'Teaching and Learning' contents and Python-based code for Calculus I and II which was used in actual classroom. In other words, the entire process of teaching and learning, action plan, and evaluation method for calculus class with Python based coding are reported and shared. In anytime and anywhere, our students were able to freely practice and effectively exercise calculus problems. By using the given code, students could gain meaningful understanding of calculus contents and were able to expand their computational thinking skills. In addition, we share a way that it motivated student activities, and evaluated students fairly based on data which they generated, but still instructor's work load is less than before. Therefore, it can be a teaching and learning model for college mathematics which shows a possibility to cover calculus concepts and computational thinking at once in a innovative way for the 21st century.
In this paper, we propose a deep learning structure suitable for embedded system. The flame detection process of the proposed deep learning structure consists of four steps : flame area detection using flame color model, flame image classification using deep learning structure for flame color specialization, $N{\times}N$ cell separation in detected flame area, flame image classification using deep learning structure for flame shape specialization. First, only the color of the flame is extracted from the input image and then labeled to detect the flame area. Second, area of flame detected is the input of a deep learning structure specialized in flame color and is classified as flame image only if the probability of flame class at the output is greater than 75%. Third, divide the detected flame region of the images classified as flame images less than 75% in the preceding section into $N{\times}N$ units. Fourthly, small cells divided into $N{\times}N$ units are inserted into the input of a deep learning structure specialized to the shape of the flame and each cell is judged to be flame proof and classified as flame images if more than 50% of cells are classified as flame images. To verify the effectiveness of the proposed deep learning structure, we experimented with a flame database of ImageNet. Experimental results show that the proposed deep learning structure has an average resource occupancy rate of 29.86% and an 8 second fast flame detection time. The flame detection rate averaged 0.95% lower compared to the existing deep learning structure, but this was the result of light construction of the deep learning structure for application to embedded systems. Therefore, the deep learning structure for flame detection proposed in this paper has been proved suitable for the application of embedded system.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.14
no.2
/
pp.95-104
/
2019
Fear to start-up failures has been known to have a negative impact on entrepreneurial intention. This is one of the reasons why the government adopts a policy to help university students overcome their fear of start-ups. Setting educational goals to foster innovative and progressive entrepreneurs, universities have been conducting entrepreneurship education, but it is hard to say that constructive results have been achieved so far. Rather than adopting the practice of optional entrepreneurship education, there is a need to have all university freshmen mandatorily take the course of entrepreneurship education. This study aims to uncover the impact of more aggressive entrepreneurship education position in the university by analyzing empirical data. The relationship between an entrepreneurship level and entrepreneurial intention was tested, and start-up fear was also considered. In the research model, self-leadership and self-efficacy were included as regressors to entrepreneurship levels. Especially, this study tested moderate effects of start-up community during the course. The results from the sample of 2,500 freshmen indicate that entrepreneurship level is significantly improved by taking the course; however, fear to start-up failures remains still. In addition, empirical findings show that putting start-up communities in the entrepreneurship education helps students by moderating self-leadership and self-efficacy. This study extends our knowledge of entrepreneurship education in university by analyzing university freshmen data empirically.
Journal of Korean Home Economics Education Association
/
v.33
no.3
/
pp.173-187
/
2021
The purpose of this research was to develop instructions for making upcycled clothing accessories related to the 'clothing management and recycling' unit of middle school home economics applying the design thinking technique. Teaching and learning process plans were developed according to the ADDIE model which includes the following process: analysis, design, development, implementation, and evaluation. The design thinking process includes understanding the related knowledge, sympathizing, problem identification(sharing perspectives) and idea development, making prototypes, testing, and making the actual product. Thirteen home economics teachers served as critics. Student feedbacks were collected to evaluate whether the course objectives were attained after the implementation. As a result, teaching and learning process plans, course materials, and evaluation rubrics for ten class sessions were developed. Student feedbacks confirmed the attainment of following five course objectives: improvement of ethical responsibilities through the exploration of various clothing recycling techniques, practice of creative and eco-friendly clothing culture, acquisition of the skills to use sewing tools safely, improvement of abilities to think, sympathize, and communicate, and exploration of aesthetic activities and fashion careers.
This study ascertained convergent influence on self-leadership and its association with self-competence, self-efficacy and locus of control among female freshmen in health majors studying TOEIC. Data collection was carried out using a self-administered questionnaire from April 29, 2019 to May 10, 2019 and the target was randomly selected 201 female freshmen in health majors in TOEIC class from college located in J city. Self-leadership was positively correlated with self-competence, self-efficacy and locus of control. The covariance structure analysis showed that the higher self-competence, the higher self-efficacy and the lower locus of control tend to increase self-leadership. The results of the study indicate that the efforts, to increase self-competence and self-efficacy, to decrease locus of control, are required to improve self-leadership of female freshmen in health majors studying TOEIC. These results are expected to be used for educational counseling and intervention efforts to enhance self-leadership among female freshmen in health majors studying TOEIC. In future studies, further research on additional factors affecting self-leadership is needed.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.362-373
/
2021
This is an action research study of mixed methodology design to confirm the implementation process and effects of applying visual thinking and window paning on improving nursing ethics and professional courses. Based on the conceptual model for action research, a quantitative and qualitative approach was taken. The data was collected and analyzed in an integrated manner. The survey analysis was done using the SPSS WIN 23.0 program. The participants were interviewed after experiencing the techniques in class and content analysis was used on the answers. As a result of applying visual thinking and window paning, ethical decision-making confidence (t=6.748, p<.001) and nursing professional intuition (t=-3.52, p<.001) showed statistically significant changes. There was, however, no significant change in biomedical ethics consciousness (t=1.291, p=.199). Qualitative analysis found that they had fresh experience, an unfamiliar but comfortable feeling, feeling of being mine, insufficient time, systematic case study approach based on theory, were able to cultivate cooperation and coordination ability through discussion and experience in various professional fields, pride, ethical responsibility consciousness and were able to apply learning content in the field. Visual thinking and window paning foster diverse competencies in nursing education and help integrative learning. Therefore, based on the results it is proposed that visual thinking and window paning are applied to the improvement of instruction in other courses to develop core nursing competency.
Nam, Sang Kwan;Jang, Hanme;Kang, Hye Young;Choi, Hyun Sang;Lee, Ji Yeong
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.6
/
pp.623-633
/
2020
As the time spent in indoor space has increased, the demand for services targeting indoor spaces also continues to increase. To provide indoor spatial information services, the construction of indoor spatial information should be done first. In the study, a method of generation IndoorGML, which is the international standard data format for Indoor space, from existing BIM data. The characteristics of IFC objects were investigated, and objects that need to be converted to IndoorGML were selected and classified into objects that restrict the expression of Indoor space and internal passages. Using the proposed method, a part of data set provided by the BIMserver github and the IFC model of the 21st Century Building in University of Seoul were used to perform experiments to generate PrimalSpaceFeatures of IndoorGML. As a result of the experiments, the geometric information of IFC objects was represented completely as IndoorGML, and it was shown that NavigableBoundary, one of major features of PrimalSpaceFeatures in IndoorGML, was accurately generated. In the future, the proposed method will improve to generate various types of objects such as IfcStair, and additional method for automatically generating MultiLayeredGraph of IndoorGML using PrimalSpaceFeatures should be developed to be sure of completeness of IndoorGML.
Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.
KIPS Transactions on Software and Data Engineering
/
v.11
no.3
/
pp.133-140
/
2022
We investigate the performance of deep learning-based Korean language models on a task of predicting the score range of Korean essays written by foreign students. We construct a data set containing a total of 304 essays, which include essays discussing the criteria for choosing a job ('job'), conditions of a happy life ('happ'), relationship between money and happiness ('econ'), and definition of success ('succ'). These essays were labeled according to four letter grades (A, B, C, and D), and a total of eleven essay score range prediction experiments were conducted (i.e., five for predicting the score range of 'job' essays, five for predicting the score range of 'happiness' essays, and one for predicting the score range of mixed topic essays). Three deep learning-based Korean language models, KoBERT, KcBERT, and KR-BERT, were fine-tuned using various training data. Moreover, two traditional probabilistic machine learning classifiers, naive Bayes and logistic regression, were also evaluated. Experiment results show that deep learning-based Korean language models performed better than the two traditional classifiers, with KR-BERT performing the best with 55.83% overall average prediction accuracy. A close second was KcBERT (55.77%) followed by KoBERT (54.91%). The performances of naive Bayes and logistic regression classifiers were 52.52% and 50.28% respectively. Due to the scarcity of training data and the imbalance in class distribution, the overall prediction performance was not high for all classifiers. Moreover, the classifiers' vocabulary did not explicitly capture the error features that were helpful in correctly grading the Korean essay. By overcoming these two limitations, we expect the score range prediction performance to improve.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.