• 제목/요약/키워드: Clark unit hydrograph model

검색결과 26건 처리시간 0.026초

통계적 기법을 적용한 외도천의 단위유량도 제안 (A Proposal of Unit Hydrograph Using Statistical Analysis in Oedo Stream, Jeju)

  • 이준호;양성기;정우열
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.393-401
    • /
    • 2015
  • Rainfall-runoff model of Jeju Oedo Stream was used to compute the optimal unit hydrograph by HEC-HMS model that reflecting on watershed characteristics. Each rainfall event was comparatively analyzed with the actual flow measurement using Clark, Snyder and SCS synthetic methods for derived unit hydrograph. Subsequently, the null hypothesis was established as p-value for peak flow and peak time of each unit hydrograph by one-way ANOVA(Analysis of variance) was larger than significance level of 0.05. There was no significant difference in peak flow and peak time between different methods of unit hydrograph. As a result of comparing error rate with actual flow measurement data, Clark synthetic unit graph best reflected in Oedo Stream as compared to other methods, and error rate of Clark unit hydrograph was 0.02~1.93% and error rate at peak time was 0~2.74%.

유역의 상사성을 이용한 Clark 모형의 매개변수 해석 (Analysis of the Clark Model Using the Similarity Characteristics of the Basin)

  • 성기원
    • 한국수자원학회논문집
    • /
    • 제32권4호
    • /
    • pp.427-435
    • /
    • 1999
  • Clark 모형은 홍수수문학에서 널리 이용되는 합성단위유량도 추정을 위한 모형이다. 본 연구에서는 미계측유역에 Clark 모형을 적용하기 위한 매개변수 추정기법을 고안하여 적용하였다. 모형의 시간-면적유하곡선은 해석적인 방법으로 유도하였으며 모형을 무차원화 하였다. 도달시간의 계산을 위하여 지형학적 자기상사성을 이용한 공식을 적용하였으며 저류상수는 유역의 시간특성의 상사성 공식을 이용하여 추정하였다. 제안된 모형의 타당성을 검토하기 위하여 동곡의 실측자료와 모형의 결과를 비교한 결과 비교적 잘 일치되는 경향을 보여주었다.

  • PDF

지형학적 인자에 따라 군집화된 중소규모유역의 합성단위도법 제시 (Estimation of Synthetic Unit Hydrograph by Cluster Analysis Using Geomorphic Characteristics of Mid-size Watershed)

  • 김진겸;김종민;강부식
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.439-449
    • /
    • 2016
  • 유역의 지형학적특성을 이용한 합성단위도법을 제시하였다. 합성단위도 산정을 위하여 19개 유역에 대하여 6개 지형학적 인자를 사용하였으며, 전체유역을 유역면적 $ 200km^2$을 기준으로 2개의 군집으로 분류하였다. 19개 유역을 대상으로 군집별로 표준화된 지형학적 인자와 유역별 대표단위도의 첨두비유량 및 첨두시간과의 회귀식을 제시하였으며, Nash와 Clark 단위도를 유도하였다. 합성단위도의 모의정확도 검증을 위해 추가적으로 선택한 6개 유역에서 2010-2011년에 발생한 145개 강우-유출사상에 적용하여 경험식을 사용한 Clark모형의 적용결과와 비교하였다. 검증결과 기존의 합성단위도법에 비해 높은 정확도를 나타내었으며, 이러한 결과는 미계측 유역에서의 적용 가능성을 보여주었다.

Clark 단위도의 저류상수산정방법의 개선 (Improvement of the storage coefficient estimating mehod for the clark model)

  • 윤태훈;박진원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(II)
    • /
    • pp.1334-1339
    • /
    • 2002
  • 본 연구는 국내의 중소하천유역의 설계홍수량 산정을 위해 사용되고 있는 Clark 모형의 저류상수륵 실무자들이 쉽게 이용할 수 있도록 하는 데 목적이 있다. 이를 위해 과거의 강우-유출자료와 단위도를 바탕으로 대표단위도를 유도하고, 수문곡선 감수분석 개넘을 이용하여 Clark 모형의 저류상수를 산정하였다. 저류상수(K)는 Clark 방법의 매개변수 중 계획홍수량에 가장 큰 영향을 주는 인자이다. 따라서 본 연구에서는 실측자료가 없는 유역에서의 K값의 산정을 위해 유역면적, 주유로연장, 유역경사를 이용한 다중 회귀방정식을 제시하였다. 회귀분석결과 저류상수(k)는 지형학적 동질성이 있는 유역에서 뛰어난 상관관계를 나타내었으며 이를 이용하여 한강, 낙동강, 영산강, 금강, 섬진강 유역의 K에 대한 회귀분석식을 도출하였다.

  • PDF

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.

남강댐유역 내 주요 하천관측지점의 홍수유출량 추정을 위한 단위도 모형 비교연구 (A Comparative Study of Unit Hydrograph Models for Flood Runoff Estimation for the Streamflow Stations in Namgang-Dam Watershed)

  • 김성민;김성재;김상민
    • 한국농공학회논문집
    • /
    • 제54권3호
    • /
    • pp.65-74
    • /
    • 2012
  • In this study, three different unit hydrograph methods (NRCS, Snyder and Clark) in the HEC-HMS were compared to find better fit with the observed data in the Namgang-Dam watershed. The Sancheong, Shinan, and Changchon in Namgang-Dam watershed were selected as the study watersheds. The input data for HEC-HMS were calculated land use, digital elevation map, stream, and watershed map provided by WAter Management Information System (WAMIS). Sixty six storms from 2004 to 2011 were selected for model calibration and validation. Three unit hydrograph methods were compared with the observed data in terms of simulated runoff volume, and peak runoff for the selected storms. The results showed that the coefficient of determination ($R^2$) for the peak runoff was 0.8295~0.9999 and root mean square error (RMSE) was 0.029~0.086 mm/day for calibration stages. In the model validation, $R^2$ for the peak runoff was 0.9061~0.9916 and RMSE was 0.030~0.088 mm/day which were more accurate than calibrated data. Analysis of variance showed that there was no significant difference among the three unit hydrograph methods.

강우-유출 자료에 의한 Clark 모형의 저류상수 결정 (Determination of the Storage Constant for the Clark Model by based on the Observed Rainfall-Runoff Data)

  • 안태진;최광훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1454-1458
    • /
    • 2007
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage constant based on the observed rainfall-runoff data at the three stage stations in the Imjin river basin and the three stage stations in the Ansung river basin. In this study four methods have been proposed to estimate the storage constant from observed rainfall-runoff data. The HEC-HMS model has been adopted to execute the sensitivity of storage constant. A criteria has been proposed to determine storage constant based on the results of the observed hydrograph and the HEC-HMS model.

  • PDF

농업소유역의 홍수유출량 추정을 위한 단위도 모형 비교연구 (A Comparative Study of Unit Hydrograph Models for Flood Runoff Simulation at a Small Watershed)

  • 성충현;김상민;박승우
    • 한국농공학회논문집
    • /
    • 제50권3호
    • /
    • pp.17-27
    • /
    • 2008
  • In this study, three different unit hydrograph methods (Snyder, SCS, Clark) in the HEC-HMS were compared to find better fit with the observed data in the small agricultural watershed. Baran watershed, having $3.85km^2$ in size, was selected as a study watershed. The watershed input data for HEC-HMS were retrieved using HEC-GeoHMS which was developed to assist making GIS input data for HEC-HMS. Rainfall and water flow data were monitored since 1996 for the study watershed. Fifty five storms from 1996 to 2003 were selected for model calibration and verification. Three unit hydrograph methods were compared with the observed data in terms of simulated peak runoff, peak time and total direct runoff for the selected storms. The results showed that the coefficient of determination ($R^2$) for the observed peak runoff was $0.8666{\sim}0.8736$ and root mean square error, RMSE, was $5.25{\sim}6.37\;m^3/s$ for calibration stages. In the model verification, $R^2$ for the observed peak runoff was $0.8588{\sim}0.8638$ and RMSE was $9.57{\sim}11.80\;m^3/s$, which were slightly less accurate than the calibrated data. The simulated flood hydrographs were well agreed with the observed data. SCS unit hydrograph method showed best fit, but there was no significant difference among the three unit hydrograph methods.

강우 시간분포를 고려한 설계홍수량산정 (Estimation of Design Flood Considering Time Distribution of Rainfall)

  • 박재현;안상진;함창학;최민호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF

강우 유출사상을 통한 Clark 모형의 매개변수 평가 (Estimation of the Parameters for the Clark Model through the Rainfall-Runoff Events)

  • 안태진;백천우;김민혁;최광훈;강인웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.770-774
    • /
    • 2006
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage coefficient in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage coefficients based on the observed rainfall-runoff events at the four stage stations in the Hantan river basin. Model calibration is the process of adjusting model parameter values until model results match historical data. An objective function which is the percent difference between the observed and computed peak flows is available for measuring the goodness-of-fit between computed and observed hydrographs. By sensitivity analysis for the storage coefficient, it has been shown that the storage coefficients affect the peak flows. The Clark parameters adopted in the River Rectification Basic Plan have been estimated through an iterative process designed to produce a hydrograph with the peak flow.

  • PDF