• Title/Summary/Keyword: Clamping voltage

Search Result 141, Processing Time 0.024 seconds

Fabrication of Glass-Ceramic Coacted Electrostatic Chucks by Tape Casting (테이프캐스팅에 의한 결정화유리 도포형 정전척의 제조)

  • 방재철;이경호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.169-172
    • /
    • 2002
  • This study demonstrated the feasibility of using tape-casting followed by sintering as a low-cost alternative for coating glass-ceramic or glass film on a metal substrate. The process has been successfully used to fabricate a glass-on-stainless steel and a glass-ceramic-on-molybdenum electrostatic chuck(ESC) with the insulating layer thickness about $150{\mu}{\textrm}{m}$. Electrical resistivity data of the coaling were obtained between room temperature and 55$0^{\circ}C$; although the resistivity values dropped rapidly with increasing temperature in both coatings, the glass-ceramic still retained a high value of $10^{10}$ ohm-cm at $500^{\circ}C$. Clamping pressure measurements were done using a mechanical apparatus equipped with a load-cell at temperatures up to $350^{\circ}C$ and applied voltages up to 600V; the clamping behavior of all ESCs generally followed the voltage-squared curve as predicted by theory. Based on these results, we believe that we have a viable technology for manufacturing ESCs for use in reactive-ion etch systems.

  • PDF

Bus Clamping PWM Based Hysteresis Current Controlled VSI Fed Induction Motor Drive with Nearly Constant Switching Frequency

  • Peter, Joseph;Mohammed Shafi, KP;Ramchand, Rijil
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1523-1534
    • /
    • 2017
  • A Current Error Space Phasor (CESP) based hysteresis controller with online computation of the boundary for two-level inverter fed Induction Motor (IM) drives is presented in this paper. The stator voltages estimated along the ${\alpha}$-and ${\beta}$-axes and the orthogonal current error components of the motor are used in the online computation of the hysteresis boundary. All of the inherent benefits of space phasor based hysteresis controllers such as its quick dynamic response and nearby voltage vector switching are present in the proposed scheme with the added benefit of suppressing switching frequency variations. The similarity in the frequency spectrum of the phase voltage obtained at the output of the inverter using the proposed scheme and Bus Clamping Pulse Width Modulation (BCPWM) based drive is justified with the help of extensive MATLAB SIMULINK simulations. The controller is experimentally verified with a three phase, 2.2 kW IM drive for steady state and transient conditions and the obtained results match the simulation results.

Constant Frequency Adjustable Power Active Voltage Clamped Soft Switching High Frequency Inverter using The 4th-Generation Trench-Gate IGBTs

  • Miyauchi T.;Hirota I.;Omori H.;Terai H.;Abdullah Al Mamun;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.236-241
    • /
    • 2001
  • This paper presents a novel prototype of active voltage-clamping capacitor-assisted edge resonant soft switching PWM inverter operating at a constant frequency variable power (VPCF) regulation scheme, which is suitable for consumer high-power induction-heating cooking appliances. New generation IGBT with a trench gate is particularly improved in order to reduce conduction loss due to its lowered saturation voltage characteristics. The soft switching load resonant and quasi-resonant inverter designed distinctively using the latest IGBTs is evaluated from an experimental point of view.

  • PDF

Short-circuit Protection for the Series-Connected Switches in High Voltage Applications

  • Tu Vo, Nguyen Qui;Choi, Hyun-Chul;Lee, Chang-Hee
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1298-1305
    • /
    • 2016
  • This paper presents the development of a short-circuit protection mechanism on a high voltage switch (HVS) board which is built by a series connection of semiconductor switches. The HVS board is able to quickly detect and limit the peak fault current before the signal board triggers off a gate signal. Voltage clamping techniques are used to safely turn off the short-circuit current and to prevent overvoltage of the series-connected switches. The selection method of the main devices and the development of the HVS board are described in detail. Experimental results have demonstrated that the HVS board is capable of withstanding a short-circuit current at a rated voltage of 10kV without a di/dt slowing down inductor. The corresponding short-circuit current is restricted to 125 A within 100 ns and can safely turn off within 120 ns.

A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter without Primary Freewheeling Diodes (1차측 환류 다이오드를 제거한 ZVS Three-Level DC/DC 컨버터에 관한 연구)

  • Chon, Yong-Jin;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.183-187
    • /
    • 2005
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage, the proposed ZVS Three-Level converter can be simplified by removing the two freewheeling diodes.

  • PDF

Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio (고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터)

  • Kang, Jung-Min;Lee, Sang-Hyun;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

Effect of Er2O3 Content on Nonlinear Properties and Impulse Clamping Characteristics of Pr/Co/Cr/Al Co-doped Zinc Oxide Ceramics

  • Nahm, Choon-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.612-617
    • /
    • 2014
  • The microstructure, nonlinear properties, and impulse clamping characteristics of Pr/Co/Cr/Al co-doped zinc oxide ceramics were investigated with various contents of $Er_2O_3$. Increasing $Er_2O_3$ content increased the density of the sintered pellets from 5.69 to $5.83g/cm^3$, and decreased the average grain size from 10.6 to $6.5{\mu}m$. With increased $Er_2O_3$ content, the breakdown field increased from 2318 to 4205 V/cm, and the nonlinear coefficient increased from 19.4 to 40.2. The clamp characteristics were improved with the increase of the content of $Er_2O_3$. The varistors doped with 2.0 mol% exhibited the best clamp characteristics, in which the clamp voltage ratio was 1.40-1.73 at 1-50 A in an impulse current.

Design and Fabrication of Wide-band Transient Voltage Blocking Device (광대역 과도전압 차단장치의 설계 및 제작)

  • 송재용;이종혁;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.330-334
    • /
    • 1999
  • This paper presents a new transient voltage blocking device (TBD) for commucation facilities with low power and high frequency bandwidth. Conventional protection devices have some problems such as low frequency bandwidth, low energy capacity and high remnant voltage. In order to improve these limitations, the new TBD, which consists of a gas tube, avalanche diodes and junction type field effect transistors (JFETs), was designed and fabricated JFETs were used as an active non-linear element and a high speed switching diode with low capacitance limits high current. Therefore the avalanche diodes with low energy capacity are protected from the high current, and the TBD has a very small input capacitance. From the performance test using surge generator, which can produce 1.2/50${\mu}\textrm{s}$ 4.2 k$V_{max}$, 8/20${\mu}\textrm{s}$ 2.1 kA$\sub$max/, it is confirmed that the proposed TBD has an excellent protection performance in tight clamping voltage and limiting current characteristics.

  • PDF

Analysis and Design of a Current-fed Two Inductor Bi-directional DC/DC Converter using Resonance for a Wide Voltage Range

  • Noh, Yong-Su;Kim, Bum-Jun;Choi, Sung-Chon;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1634-1644
    • /
    • 2016
  • In this paper, a current-fed two-inductor bi-directional DC/DC converter using resonance (CF-TIBCR) and its design method are proposed. The CF-TIBCR has characteristics of low current ripple and a high current rating because of two separated inductors. Also, it achieves zero voltage switching for all switches and zero current switching for switches of a low voltage stage by using the resonant tank. Besides, a voltage spike problem in conventional current-fed converters is solved without the need for an additional snubber or clamping circuits. As a result, the CF-TIBCR features high step-up and high efficiency. Since the proposed converter has difficulty achieving the soft-switching condition when the converter requires the low voltage transfer ratio, a method that varies the number of resonant cycles is adopted to extend the output voltage range with satisfying the soft-switching condition. The principles of the operation characteristics are presented with a theoretical analysis, and the proposed converter is verified through results of an experiment using a laboratory prototype.

A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method (고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터)

  • Kim, Hong-Shin;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.