• Title/Summary/Keyword: Clamped capacitance

Search Result 11, Processing Time 0.03 seconds

QUASI-RESONANT ZVS-PWM DC-DC FORWARD CONVERTER WITH ACTIVE CLAMPED CAPACITOR FOR SOLAR PHOTOVOLTAIC ENERGY-DRIVEN BOAT SYSTEM

  • Kenya, Sakamoto;Masakazu, Kanaoka;Hidekazu, Muraoka;Ryuhei, Hojyo;Mutsuo, Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.68-73
    • /
    • 1998
  • This paper presents a novel prototype of active voltage clamped quasi-resonant ZVS-PWM forward DC-DC converter designed for specific low voltage high current application. We establish the soft-switching forward converter with a high frequency isolated link which can efficient operate over wide load ranges under conditions of zero voltage soft-switching and active voltage clamped switching. In addition, we evaluate connection of the soft-switching forward converter with large capacitor which capacitance is over 100[F].

  • PDF

Clamped capacitance control of a piezoelectric single crystal vibrator using a generalized impedance converter circuit (범용 임피던스 변환회로를 이용한 압전 단결정 진동자의 제동용량 제어)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • The piezoelectric single crystals used in piezoelectric transformers have a problem that power transfer capacity is comparatively low due to their high input impedance. In this study, we suggest a method to improve the power transfer capacity by reducing the high input impedance of the piezoelectric single crystal vibrator by connecting a capacitance increasing circuit to the electrical terminals of the piezoelectric single crystal vibrator where the circuit is a GIC (Generalized Impedance Converter) circuit using operational amplifiers. The result of measuring driving characteristics after applying the designed capacitance increasing circuit to the $128^{\circ}$ rotated Y-cut $LiNbO_3$ crystal vibrator confirmed that the input impedance decreased by 25 %, electromechanical coupling factor increased by 30 %, and the power transfer capacity increased by about 17 to 30 times in voltage conversion characteristics.

Electrically Enhanced Readout System for a High-Frequency CMOS-MEMS Resonator

  • Uranga, Arantxa;Verd, Jaume;Lopez, Joan Lluis;Teva, Jordi;Torres, Francesc;Giner, Joan Josep;Murillo, Gonzalo;Abadal, Gabriel;Barniol, Nuria
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.478-480
    • /
    • 2009
  • The design of a CMOS clamped-clamped beam resonator along with a full custom integrated differential amplifier, monolithically fabricated with a commercial 0.35 ${\mu}m$ CMOS technology, is presented. The implemented amplifier, which minimizes the negative effect of the parasitic capacitance, enhances the electrical MEMS characterization, obtaining a $48{\times}10^8$ resonant frequency-quality factor product ($Q{\times}f_{res}$) in air conditions, which is quite competitive in comparison with existing CMOS-MEMS resonators.

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

A SVPWM for the Small Fluctuation of Neutral Point Current in Three-level Inverter (중성점 전류 리플을 고려한 3-레벨 인버터의 공간 벡터 펄스폭 변조 기법)

  • 김래영;이요한;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.33-37
    • /
    • 1998
  • For the high power variable speed applications, the DCTLI(diode clamped three-level inverter) have been widely used. This paper describes the analysis of the neutral point current of the DCTLI and the improved space vector-based PWM strategy considering the switching frequency of power devices, that minimizes the fluctuation of the neutral point current in spite of high modulation index region and low power factor. It contributes to decrease the capacitance of dc-link capacitor bank and to increase the neutral point voltage controllable region. Especially, even if second (or even) order harmonic is induced in load current (at this situation, is was investigated that the general control method can not suppress the neutral point voltage variation), this PWM can provide effective control method to suppress the neutral point voltage variation. Various simulation results by means of Matlab/Simulation are presented to verify the proposed PWM.

  • PDF

A Novel Boost PFC Converter Employing ZVS Based Compound Active Clamping Technique with EMI Filter

  • Mohan, P. Ram;Kumar, M. Vijaya;Reddy, O.V. Raghava
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • A Boost Power Factor Correction (PFC) Converter employing Zero Voltage Switching (ZVS) based Compound Active Clamping (CAC) technique is presented in this paper. An Electro Magnetic Interference (EMI) Filer is connected at the line side of the proposed converter to suppress Electro Magnetic Interference. The proposed converter can effectively reduce the losses caused by diode reverse recovery. Both the main switch and the auxiliary switch can achieve soft switching i.e. ZVS under certain condition. The parasitic oscillation caused by the parasitic capacitance of the boost diode is eliminated. The voltage on the main switch, the auxiliary switch and the boost diode are clamped. The principle of operation, design and simulation results are presented here. A prototype of the proposed converter is built and tested for low input voltage i.e. 15V AC supply and the experimental results are obtained. The power factor at the line side of the converter and the converter efficiency are improved using the proposed technique.

Analysis and Implementation of a DC-DC Converter with an Active Snubber

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.779-786
    • /
    • 2011
  • This paper presents a soft switching converter to achieve the functions of zero voltage switching (ZVS) turn-on for the power switches and dc voltage step-up. Two circuit modules are connected in parallel in order to achieve load current sharing and to reduce the size of the transformer core. An active snubber is connected between two transformers in order to absorb the energy stored in the leakage and magnetizing inductances and to limit the voltage stresses across the switches. During the commutation stage of the two complementary switches, the output capacitance of the two switches and the leakage inductance of the transformers are resonant. Thus, the power switches can be turned on under ZVS. No output filter inductor is used in the proposed converter and the voltage stresses of the output diodes is clamped to the output voltage. The circuit configuration, the operation principles and the design considerations are presented. Finally, laboratory experiments with a 340W prototype, verifying the effectiveness of the proposed converter, are described.

Design of High-Speed EEPROM IP Based on a BCD Process (BCD 공정기반의 고속 EEPROM IP 설계)

  • Jin, RiJun;Park, Heon;Ha, Pan-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.455-461
    • /
    • 2017
  • In this paper, a local DL (Data Line) sensing method with smaller parasitic capacitance replacing the previous distributed DB sensing method with large parasitic capacitance is proposed to reduce the time to transfer BL (Bit Line) voltage to DL in the read mode. A new BL switching circuit turning on NMOS switches faster is also proposed. Furthermore, the access time is reduced to 35.63ns from 40ns in the read mode and thus meets the requirement since BL node voltage is clamped at 0.6V by a DL clamping circuit instead of precharging the node to VDD-VT and a differential amplifier are used. The layout size of the designed 512Kb EEPROM memory IP based on a $0.13{\mu}m$ BCD is $923.4{\mu}m{\times}1150.96{\mu}m$ ($=1.063mm^2$).

A Control Scheme for Quality Improvement of Input-Output Current of Small DC-Link Capacitor Based Three-Level NPC Inverters (소용량 직류단 커패시터를 가지는 3-레벨 NPC 인버터의 입-출력 전류 품질 향상을 위한 제어 기법)

  • In, Hyo-Chul;Kim, Seok-Min;Park, Seong-Soo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.369-372
    • /
    • 2017
  • This paper presents a control scheme for three-level NPC inverters using small DC-link capacitors. To reduce the inverter system volume, the film capacitor with small capacitance is a promising candidate for the DC-link. When small capacitors are applied in a three level inverter, however, the AC ripple component increases in the DC-link NPV (neutral point voltage). In addition, the three-phase input grid currents are distorted when the DC-link capacitors are fed by diode rectifier. In this paper, the additional circuit is applied to compensate for small capacitor systems defect, and the offset voltage injection method is presented for the stabilization in NPV. These two proposed processes evidently ensure the quality improvement of the input grid currents and output load currents. The feasibility of the proposed method is verified by experimental results.

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.