• 제목/요약/키워드: Cladding material

검색결과 167건 처리시간 0.03초

TiAIN 코팅한 핵연료봉 피복재의 프레팅 마멸 평가 (Fretting Wear Evaluation of TiAIN Coated Nuclear Fuel Rod Cladding Materials)

  • 김태형;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.88-95
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 Tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to bean ideal solution to fretting damage since fretting is closely related to wear, corrosion and fatigue. Therefore, in this study the fretting wear experiment was peformed using TiAIN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaioy-4 tube as one of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAIN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and the fretting wear mechanisms were delamination and plastic flow following by brittle fracture at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher slip amplitude.

  • PDF

Highly Birefringent Slotted-porous-core Photonic Crystal Fiber with Elliptical-hole Cladding for Terahertz Applications

  • Lee, Yong Soo;Kim, Soeun;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • 제6권2호
    • /
    • pp.129-136
    • /
    • 2022
  • We propose a photonic crystal fiber (PCF) with a slotted porous core and elliptical-hole cladding, for high birefringence in the terahertz regime. Asymmetry in the guided mode is obtained mainly by using arrays of elliptical air holes in the TOPAS® polymer cladding. We investigate the tradeoff between several structural parameters and find optimized values that can have a high birefringence while satisfying the single-mode condition. The optical properties in the terahertz regime are thoroughly analyzed in numerical simulations, using a full-vector finite-element method with the perfectly-matched-layer condition. In an optimal design, the proposed photonic crystal fiber shows a high birefringence of 8.80 × 10-2 and an effective material loss of 0.07 cm-1 at a frequency of 1 THz, satisfying the single-mode-guidance condition at the same time. The proposed PCF would be useful for various polarization-management applications in the terahertz range.

다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구 (Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding)

  • 김태용;이정현;김지현
    • 한국압력기기공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

원자력 사고 안전성 향상을 위한 SiCf/SiC 복합소재 개발 동향 (A Review of SiCf/SiC Composite to Improve Accident-Tolerance of Light Water Nuclear Reactors)

  • 김대종;이지수;천영범;이현근;박지연;김원주
    • Composites Research
    • /
    • 제35권3호
    • /
    • pp.161-174
    • /
    • 2022
  • SiC 섬유강화 복합체는 경수형 원자로의 안전성을 획기적으로 향상시킬 수 있는 사고저항성 핵연료 피복관 소재이다. 지르코늄 합금 피복관 및 금속기반 사고저항성 핵연료 피복관에 비해, 중대 사고 환경에서도 우수한 구조적 안정성을 가지고 부식 속도가 매우 낮아, 사고 시 원자로의 온도를 낮추고 사고 진행을 늦출 수 있다. 본 논문에서는 현재 개발되고 있는 사고저항성 SiC 복합체 핵연료 피복관의 개념 및 가동/사고환경에서의 다양한 특성, 상용화를 위해 해결해야 할 다양한 이슈에 대해서 소개하고자 한다.

Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea

  • Kim, Hyun-Gil;Yang, Jae-Ho;Kim, Weon-Ju;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.1-15
    • /
    • 2016
  • For a long time, a top priority in the nuclear industry was the safe, reliable, and economic operation of light water reactors. However, the development of accident-tolerant fuel (ATF) became a hot topic in the nuclear research field after the March 2011 events at Fukushima, Japan. In Korea, innovative concepts of ATF have been developing to increase fuel safety and reliability during normal operations, operational transients, and also accident events. The microcell $UO_2$ and high-density composite pellet concepts are being developed as ATF pellets. A microcell $UO_2$ pellet is envisaged to have the enhanced retention capabilities of highly radioactive and corrosive fission products. High-density pellets are expected to be used in combination with the particular ATF cladding concepts. Two concepts-surface-modified Zr-based alloy and SiC composite material-are being developed as ATF cladding, as these innovative concepts can effectively suppress hydrogen explosions and the release of radionuclides into the environment.

신공법에 의한 알루미늄 피복강선 개발 (The Development of Al Clad Steel wire by New Process)

  • 김상수;구재관;김병걸
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.457-458
    • /
    • 2008
  • We have developed new process to product Al clad steel wire. New machine was modified to be able to apply an four step of "foiling-sizing-cladding-drawing" considering low clad temperature and high clad pressure. The foiling part for continuous foiling of Al sheet was designed and machine. Cladding properties at Al and steel interface were investigated for the processes of new work.

  • PDF

복합압출재료봉의 공정변수가 성형 적합성에 미치는 영향 (Influence of Process Parameters on the Forming Compatibility in Composite Extrusion Rods)

  • 장동환
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.80-86
    • /
    • 2009
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. From the simulation results, the sleeve cladding rate at the core/sleeve interface was recorded as a distribution of diameter ratio and interference conditions, which will be useful for the investigations of the bonding process during co-extrusion process. In addition, the results of the co-extrusion, connected with the results of the variations of diameter rate and average contact pressure, demonstrate a good agreement and present the possibility of describing the parameters of the plastic zones in non-uniform deformation of these type of composite materials.

Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향 (Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials)

  • 배동현;정수정;조영래;정원섭;정호신;강창룡;배동수
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

란탄족 원소와 Ferritic-Martensitic 강의 반응 거동 (Interaction Behavior between Lanthanide Element and Ferritic-Martensitic Steel)

  • 김준환;백종혁;이병운;이찬복;윤영수
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.691-698
    • /
    • 2010
  • A study has been carried out to evaluate the interaction behavior between a lanthanide element and clad material in order to analyze the effect of the lanthanide element on the fuel cladding chemical interaction (FCCI). A diffusion couple test between Misch metal (70Ce-30La) and ferritic-martensitic steel (Gr.92) was performed at $660^{\circ}C$, followed by a microstructural analysis of the coupled sample. The results showed that Ce in the Misch metal, rather than La, reacted with the ferritic-martensitic steel (FMS) to form an interaction layer that penetrated the clad thickness. Fe diffused outside the clad interface to form an $Fe_2Ce$ compound, leaving a depletion of Fe caused by excess diffusion as well as by the formation of Cr-rich precipitation inside the interaction layer. The rate of growth followed the cubic rate law, which indicated that Fe depletion was caused by the diffusion of Fe and that the associated Cr-rich phase formation controlled the whole diffusion process.