Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.08.691

Interaction Behavior between Lanthanide Element and Ferritic-Martensitic Steel  

Kim, Jun Hwan (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute)
Baek, Jong Hyuk (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute)
Lee, Byoung Oon (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute)
Lee, Chan Bock (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute)
Yoon, Young Soo (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.8, 2010 , pp. 691-698 More about this Journal
Abstract
A study has been carried out to evaluate the interaction behavior between a lanthanide element and clad material in order to analyze the effect of the lanthanide element on the fuel cladding chemical interaction (FCCI). A diffusion couple test between Misch metal (70Ce-30La) and ferritic-martensitic steel (Gr.92) was performed at $660^{\circ}C$, followed by a microstructural analysis of the coupled sample. The results showed that Ce in the Misch metal, rather than La, reacted with the ferritic-martensitic steel (FMS) to form an interaction layer that penetrated the clad thickness. Fe diffused outside the clad interface to form an $Fe_2Ce$ compound, leaving a depletion of Fe caused by excess diffusion as well as by the formation of Cr-rich precipitation inside the interaction layer. The rate of growth followed the cubic rate law, which indicated that Fe depletion was caused by the diffusion of Fe and that the associated Cr-rich phase formation controlled the whole diffusion process.
Keywords
metals; annealing; diffusion; scanning electron microscopy (SEM); lanthanide;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Y. I. Chang, Nucl. Eng. Tech. 39, 161 (2007).   DOI   ScienceOn
2 J. H. Baek, S. H. Kim, C. B. Lee, and D. H. Hahn, Met. Mater. Int. 15, 565 (2009).   DOI   ScienceOn
3 G. L. Hofman and L. C. Walkers, Metallic fast fuels, in: R. W. Cahn, P. Haasen, E. J. Kramer (Eds.), Material Science and Technology - A Comprehensive Treatment, 10A Part I, VCH, Germany, p.28 (1994).
4 D. D. Keiser, ANL-NT-240 (2006).
5 S. A. Adams, et al., NUREG-1368, B-4 (1994).
6 P. C. Tortorici and M. A. Dayananda, J. Nucl. Mater. 204, 165 (1993).   DOI   ScienceOn
7 D. D. Keiser, Script. Metall. et Mater. 33, 959 (1995).   DOI   ScienceOn
8 Y. G. Kim, C. H. Han, J. H. Baek, S. H. Kim, C. B. Lee, and S. I. Hong, Kor. J. Met. Mater. 48, 39 (2010).   DOI
9 S. G. Fishman and C. R. Crowe, Metallography 4, 572 (1971).   DOI   ScienceOn
10 K. Nakamura, T. Ogata, M. Kurata, A. Itoh, and M. Akabori, J. Nucl. Mater. 275, 246 (1999).   DOI   ScienceOn
11 P. E. Palmer, H. R. Burkholder, B. J. Beaudry, and K. A. Gschneidner, J. of the Less-Comm. Metals 87, 135 (1982).   DOI   ScienceOn
12 T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker, and K. Kacprzak, Binary Alloy Phase Diagrams, 2nd Ed., ASM International, p.1059 (1986).