DOI QR코드

DOI QR Code

Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea

  • Kim, Hyun-Gil (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Yang, Jae-Ho (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Koo, Yang-Hyun (LWR Fuel Technology Division, Korea Atomic Energy Research Institute)
  • Received : 2015.12.11
  • Accepted : 2015.12.11
  • Published : 2016.02.25

Abstract

For a long time, a top priority in the nuclear industry was the safe, reliable, and economic operation of light water reactors. However, the development of accident-tolerant fuel (ATF) became a hot topic in the nuclear research field after the March 2011 events at Fukushima, Japan. In Korea, innovative concepts of ATF have been developing to increase fuel safety and reliability during normal operations, operational transients, and also accident events. The microcell $UO_2$ and high-density composite pellet concepts are being developed as ATF pellets. A microcell $UO_2$ pellet is envisaged to have the enhanced retention capabilities of highly radioactive and corrosive fission products. High-density pellets are expected to be used in combination with the particular ATF cladding concepts. Two concepts-surface-modified Zr-based alloy and SiC composite material-are being developed as ATF cladding, as these innovative concepts can effectively suppress hydrogen explosions and the release of radionuclides into the environment.

Keywords

References

  1. Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, K.W. Song, KAERI's development of LWR accidenttolerant fuel, Nucl. Technol. 186 (2014) 295-304. https://doi.org/10.13182/NT13-89
  2. J. Carmack, F. Goldner, S.M. Bragg-Sitton, L.L. Snead, Overview of the U.S. DOE accident tolerant fuel development program, TopFuel 2013, Charlotte, North Carolina, Sep. 15-19, 2013.
  3. B. Chang, Y.J. Kim, P. Chou, J. Deshon, Development of Moalloy for LWR fuel cladding to enhance fuel tolerance to severe accidents, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013.
  4. I. Idarraga-Trujillo, M. Le Flem, J-C. Brachet, M. Le Saux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, F. Schuster, Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013.
  5. H.G. Kim, I.H. Kim, J.Y. Park, Y.H. Koo, Application of Coating Technology on Zr-based Alloy to Decrease High-temperature Oxidation, Zirconium in the Nuclear Industry STP 1543, 2013, http://dx.doi.org/10.1520/STP154320120161.
  6. B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments, J. Nucl. Mater. 440 (2013) 420-427. https://doi.org/10.1016/j.jnucmat.2013.05.047
  7. K.A. Terrani, S.J. Zinkel, L.L. Snead, Advanced oxidationresistance iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2013) 420-435.
  8. J.D. Stempien, D.M. Carpenter, G. Kohse, M.S. Kazimi, Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions, Nucl. Technol. 183 (2013) 13-29. https://doi.org/10.13182/NT12-86
  9. R. Montgomery, E. Mader, N. Domenico, R. Fawcett, J. Guerci, E. Lahoda, B. Minnick, P. Murray, S. Nesbit, M. Meyer, S.M. Bragg-Sitton, Industry-valued design objectives for advanced LWR fuels and concept screening results, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013.
  10. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (2014) 374-379. https://doi.org/10.1016/j.jnucmat.2013.12.005
  11. J. Bischoff, P. Blanpain, J. Strumpell, Development of Fuels with Enhanced Accident Tolerance, IAEA Technical Meeting on Accident Tolerant Fuel Concepts for LWRs, Oak Ridge National Lab, USA, Oct. 13-14, 2015.
  12. A.M. Savchenko, V.B. Ivanov, V.V. Novikov, M.V. Skupov, G.V. Kulakov, V.K. Orlov, O.I. Uferov, Y.V. Konovalov, Review of A.A. BOCHVAR Institute activities in developing potentially accident tolerant fuel for LWRs, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015.
  13. S. Ray, P. Xu, E. Lahoda, L. Hallstadius, F. Boylan, S. Johnson, Westinghouse accident tolerant fuel program-current results & future plans, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015.
  14. T. Liu, Update of accident tolerant fuel R&D status in China, 4th Meeting of the Expert Group on Accident Tolerant Fuels for Light Water Reactors, PSI, Villingen(Switzerland) Sep. 17-18. 2015.
  15. W.-J. Kim, D. Kim, J.Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding, Nucl. Eng. Technol. 45 (2013) 565-572. https://doi.org/10.5516/NET.07.2012.084
  16. S. Ray, S.C. Johnson, E.J. Lahoda, Preliminary assessment of the performance of SiC based accident tolerant fuel in commercial LWR systems, TopFuel 2013, American Nuclear Society, Charlotte, USA, Sep. 15-19, 2013.
  17. J.H. Yang, K.S. Kim, D.J. Kim, J.H. Kim, J.S. Oh, Y.W. Rhee, Y.H. Koo, Micro-cell UO2 pellets for enhanced accident tolerant fuel, TopFuel 2013, American Nuclear Society, Charlotte, USA, Sep. 15-19, 2013.
  18. D.J. Kim, Y.W. Rhee, J.H. Kim, K.S. Kim, J.S. Oh, J.H. Yang, Y.H. Koo, K.W. Song, Fabrication of micro-cell $UO_2$-Mo pellet with enhanced thermal conductivity, J. Nucl. Mater. 462 (2015) 289-295. https://doi.org/10.1016/j.jnucmat.2015.04.003
  19. J.H. Yang, D.J. Kim, K.S. Kim, Y.H. Koo, $UO_2$-UN composites with enhanced uranium density and thermal conductivity, J. Nucl. Mater. 465 (2015) 509-515. https://doi.org/10.1016/j.jnucmat.2015.06.039
  20. L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (2014) 520-533. https://doi.org/10.1016/j.jnucmat.2013.09.052
  21. K.A. Terrani, D. Wang, L.J. Ott, R.O. Montgomery, The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents,, J. Nucl. Mater. 448 (2014) 512-519. https://doi.org/10.1016/j.jnucmat.2013.09.051
  22. G. Brillant, F. Gupta, A. Pasturel, Fission products stability in uranium dioxide, J. Nucl. Mater. 412 (2011) 170-176. https://doi.org/10.1016/j.jnucmat.2011.02.054
  23. D. Jadernas, F. Corleoni, A. Puranen, P. Tejland, M. Granfors, PCI mitigation using fuel additives, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015.
  24. H.S. Lee, D.J. Kim, S.W. Kim, J.H. Yang, Y.H. Koo, D.R. Kim, Thermal conductivity of metallic micro-cell fuel pellet with different unit cell geometry, Spring Meeting 2015, Korean Nuclear Society, Jeju(Korea) May 7-8, 2015.
  25. J.H. Yang, D.J. Kim, K.S. Kim, Y.H. Koo, Thermo-physical property of micro-cell UO2 pellets and high density composite pellets for accident tolerant fuel, IAEA Technical Meeting on Accident Tolerant Fuel Concepts for LWRs, Oak Ridge National Lab., USA, Oct. 13-14, 2015.
  26. D.J. Kim, J.H. Yang, J.H. Kim, K.S. Kim, Y.W. Rhee, J.S. Oh, Y.H. Koo, Metal network containing micro-cell UO2 pellets for accident tolerant fuel, 11th Pacific Rim Conference of Ceramic Societies, Jeju(Korea) Aug. 30-Sept. 4, 2015.
  27. B.J. Lewis, W.T. Thompson, F. Akbari, D. Thompson, C. Thurgood, J. Higgs, Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel, J. Nucl. Mater. 328 (2004) 180-196. https://doi.org/10.1016/j.jnucmat.2004.04.336
  28. J. Spino, P. Peerani, Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: review of data and alternative interpretation of recently published results, J. Nucl. Mater. 375 (2008) 8-25. https://doi.org/10.1016/j.jnucmat.2007.10.007
  29. D.H. Hwang, S.G. Hong, W.K. In, Evaluation of physical characteristics of PWR cores with accident tolerant fuels, Autumn Meeting 2015, Korean Nuclear Society, Gyeongju(Korea), Oct. 29-30, 2015.
  30. G.J. Youinou, R.S. Sen, Impact of accident-tolerant fuels and claddings on the overall fuel cycle: a preliminary systems analysis, Nucl. Technol. 188 (2014) 123-128. https://doi.org/10.13182/NT14-22
  31. M. Uno, T. Nishi, M. Takano, Thermodynamic and thermophysical properties of the actinide nitrides, in: Comprehensive Nuclear Materials, Elsevier, 2012, pp. 61-85.
  32. J.M. Harp, P.A. Lessing, R.E. Hoggan, Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation, J. Nucl. Mater. 466 (2015) 728-738. https://doi.org/10.1016/j.jnucmat.2015.06.027
  33. B.J. Jaques, J. Watkins, J.R. Croteau, G.A. Alanko, B. Tyburska-Puschel, M. Meyer, P. Xu, E.J. Lahoda, D.P. Butt, Synthesis and sintering of UN-$UO_2$ fuel composites, J. Nucl. Mate.r 466 (2015) 745-754. https://doi.org/10.1016/j.jnucmat.2015.06.029
  34. P.A. Lessing, INL/EXT-12-24974, Oxidation Protection of Uranium Nitride Fuel Using Liquid Phase Sintering, Idaho National Laboratory, 2012.
  35. G.A. Rama Rao, S.K. Mukerjee, V.N. Vaidya, V. Venugopal, D.D. Sood, Oxidation and hydrolysis kinetic studies on UN, J. Nucl. Mater. 185 (1991) 231-241. https://doi.org/10.1016/0022-3115(91)90340-D
  36. K.H. Kim, D.B. Lee, C.K. Kim, G.E. Hofman, K.W. Paik, Characterization U-2wt% Mo and U-10 wt% Mo alloy powders prepared by centrifugal atomization, J. Nucl. Mater. 245 (1997) 179-184. https://doi.org/10.1016/S0022-3115(97)00011-1
  37. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, Microstructure and mechanical strength of surface ODS treated Zircaloy-4 sheet using laser beam scanning, Nucl. Eng. Technol. 46 (4) (2014) 521-528. https://doi.org/10.5516/NET.07.2014.027
  38. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater. 465 (2015) 531-539. https://doi.org/10.1016/j.jnucmat.2015.06.030
  39. L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook on SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (2007) 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
  40. K. Yueh, D. Carpenter, H. Feinroth, Clad in clay, Nucl. Eng. Int. 55 (2010) 14-16.
  41. K.A. Terrani, B.A. Pint, C.M. Parish, C.M. Silva, L.L. Snead, Y. Katoh, Silicon carbide oxidation in steam up to 2 MPa, J. Am. Ceram. Soc. 97 (2014) 2331-2352. https://doi.org/10.1111/jace.13094
  42. D. Carpenter, An Assessment of Silicon Carbides as a Cladding Material for Light Water Reactors, Ph.D. thesis, Massachusetts Institute of Technology, 2010.
  43. Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Radiation effects in SiC for nuclear structural applications, Curr. Opin. Solid State Mater. Sci. 16 (2012) 143-152. https://doi.org/10.1016/j.cossms.2012.03.005
  44. D. Kim, H.-G. Lee, J.Y. Park,W.-J. Kim, Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications, J. Nucl. Mater. 458 (2015) 29-36. https://doi.org/10.1016/j.jnucmat.2014.11.117
  45. D. Kim, J. Lee, J.Y. Park, W.-J. Kim, Effect of filament winding methods on surface roughness and fiber volume fraction of SiCf/SiC composite tubes, J. Korean Ceram. Soc. 50 (2013) 359-363. https://doi.org/10.4191/kcers.2013.50.6.359
  46. D.G.S. Davies, The statistical approach to engineering design in ceramics,, Proc. Br. Ceram. Soc. 22 (1973) 429-452.
  47. W.-J. Kim, H.S. Hwang, J.Y. Park, W.-S. Ryu, Corrosion behaviors of sintered and chemically vapor deposited silicon carbide ceramics in water at $360^{\circ}C$, J. Mater. Sci. Lett. 22 (2003) 581-584. https://doi.org/10.1023/A:1023390111074
  48. L. Tan, T.R. Allen, E. Barringer, Effect of microstructure on the corrosion of CVD-SiC exposed to supercritical water, J. Nucl. Mater. 394 (2009) 95-101. https://doi.org/10.1016/j.jnucmat.2009.08.008
  49. J.-Y. Park, I.-H. Kim, Y.-I. Jung, H.-G. Kim, D.-J. Park, W.-J. Kim, Long-term corrosion behavior of CVD SiC in $360^{\circ}C$ water and $400^{\circ}C$ steam, J. Nucl. Mater. 433 (2013) 603-607.
  50. C.H. Henager Jr., A.L. Schemer-Kohrn, S.G. Pitman, D.J. Senor, K.J. Geelhood, C.L. Painter, Pitting corrosion in CVD SiC at $300^{\circ}C$ in deoxygenated high-purity water, J. Nucl. Mater. 378 (2008) 9-16. https://doi.org/10.1016/j.jnucmat.2008.03.025
  51. D. Kim, H.-G. Lee, J.Y. Park, J.-Y. Park, W.-J. Kim, Effect of dissolved hydrogen on the corrosion behavior of chemically vapor deposited SiC in a simulated pressurized water reactor environment, Corros. Sci. 98 (2015) 304-309. https://doi.org/10.1016/j.corsci.2015.05.031

Cited by

  1. Fibre-reinforced multifunctional SiC matrix composite materials vol.62, pp.3, 2017, https://doi.org/10.1080/09506608.2016.1213939
  2. Big Data Analysis of Public Acceptance of Nuclear Power in Korea vol.49, pp.4, 2016, https://doi.org/10.1016/j.net.2016.12.015
  3. Performance degradation of candidate accident-tolerant cladding under corrosive environment vol.35, pp.3, 2016, https://doi.org/10.1515/corrrev-2017-0014
  4. Performance degradation of candidate accident-tolerant cladding under corrosive environment vol.35, pp.3, 2016, https://doi.org/10.1515/corrrev-2017-0014
  5. Thermal shock resistance and hoop strength of triplex silicon carbide composite tubes vol.14, pp.6, 2016, https://doi.org/10.1111/ijac.12753
  6. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes vol.50, pp.2, 2016, https://doi.org/10.1016/j.net.2017.12.001
  7. AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding vol.50, pp.2, 2016, https://doi.org/10.1016/j.net.2017.12.004
  8. Development status of microcell UO2 pellet for accident-tolerant fuel vol.50, pp.2, 2016, https://doi.org/10.1016/j.net.2017.12.008
  9. Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance vol.50, pp.2, 2018, https://doi.org/10.1016/j.net.2017.12.011
  10. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure vol.502, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2018.01.055
  11. Preparation and Characterization of SiC Nanoparticles for ATF-FCM vol.281, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/ssp.281.22
  12. Studies on magnetron-sputtered zirconium-silicide coatings deposited on zirconium alloy for the enhancement of their high-temperature oxidation resistance vol.63, pp.3, 2016, https://doi.org/10.2478/nuka-2018-0009
  13. High dose self-ion irradiation of silicon carbide with nanostructured ferritic alloy aid vol.54, pp.1, 2016, https://doi.org/10.1007/s10853-018-2824-0
  14. Influence of the Cr interlayer on the microstructure of sputtered TiN coatings deposited on zirconium alloy vol.6, pp.2, 2016, https://doi.org/10.1088/2053-1591/aaf041
  15. Density functional theory calculations of self- and Xe diffusion in U3Si2 vol.515, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2018.12.021
  16. Corrosion and high-temperature steam oxidation of E110 alloy and its laser welds after ion irradiation vol.152, pp.None, 2016, https://doi.org/10.1016/j.corsci.2019.02.031
  17. Multiscale modeling of fission gas behavior in U3Si2 under LWR conditions vol.522, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.04.037
  18. Development of FRACAS-CT module with FRAPCON4.0P01 for simulation of mechanical behaviors for accident-tolerant fuel cladding in a reactor vol.56, pp.8, 2016, https://doi.org/10.1080/00223131.2019.1624653
  19. Chemical compatibility of silicon carbide in molten fluoride salts for the fluoride salt-cooled high temperature reactor vol.524, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2019.07.001
  20. Corrosion behavior of Fe–Cr–Si alloys in simulated PWR primary water environment vol.526, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.07.035
  21. Separate effects irradiation testing of miniature fuel specimens vol.526, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.151783
  22. Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors vol.31, pp.3, 2016, https://doi.org/10.1007/s41365-020-0741-9
  23. Development of a grain growth model for U3Si2 using experimental data, phase field simulation and molecular dynamics vol.532, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2020.152069
  24. High temperature steam oxidation dynamics of U3Si2 with alloying additions: Al, Cr, and Y vol.533, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2020.152072
  25. Microstructure evolution in MA956 neutron irradiated in ATR at 328 °C to 4.36 dpa vol.533, pp.None, 2020, https://doi.org/10.1016/j.jnucmat.2020.152094
  26. U3Si2 and UO2 composites densified by spark plasma sintering for accident-tolerant fuels vol.534, pp.None, 2020, https://doi.org/10.1016/j.jnucmat.2020.152147
  27. Ion irradiation effects on Cr-coated zircaloy-4 surface wettability and pool boiling critical heat flux vol.362, pp.None, 2016, https://doi.org/10.1016/j.nucengdes.2020.110581
  28. Spark plasma sintering (SPS) densified U3Si2 pellets: Microstructure control and enhanced mechanical and oxidation properties vol.825, pp.None, 2020, https://doi.org/10.1016/j.jallcom.2020.154022
  29. Influence of Laser Energy Density on Interfacial Diffusion Bonding and Surface Density of Chromium Coating by Multi-Arc Ion Plating on Zirconium Alloy vol.10, pp.6, 2016, https://doi.org/10.3390/coatings10060565
  30. Effect of surface characteristics and environmental aging on wetting of Cr-coated Zircaloy-4 accident tolerant fuel cladding material vol.535, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2020.152163
  31. Application and Development Progress of Cr-Based Surface Coatings in Nuclear Fuel Element: I. Selection, Preparation, and Characteristics of Coating Materials vol.10, pp.9, 2016, https://doi.org/10.3390/coatings10090808
  32. Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4 vol.541, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2020.152420
  33. Investigation of Microstructure and Nanoindentation Hardness of C + & He + Irradiated Nanocrystal SiC Coatings during Annealing and Corrosion vol.13, pp.23, 2016, https://doi.org/10.3390/ma13235567
  34. Zr2Al3C4 Coatings on Zirconium-alloy Substrates with Enhanced Adhesion and Diffusion Barriers by Al/Mo-C Interlayers vol.36, pp.5, 2016, https://doi.org/10.15541/jim20200286
  35. Friction and Wear Properties of CrAl-Based Coatings for Nuclear Fuel Cladding vol.9, pp.None, 2021, https://doi.org/10.3389/fenrg.2021.622708
  36. Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout vol.213, pp.None, 2016, https://doi.org/10.1016/j.ress.2021.107770
  37. In-situ synthesized nanocrystalline UO2/SiC composite with superior thermal conductivity vol.47, pp.22, 2016, https://doi.org/10.1016/j.ceramint.2021.07.290
  38. Corrosion Behavior of Chromium Coated Zy-4 Cladding under CANDU Primary Circuit Conditions vol.11, pp.11, 2016, https://doi.org/10.3390/coatings11111417
  39. Influence of the structural state and crystallographic texture of Zr-2.5% Nb alloy samples on the anisotropy of their thermal expansion vol.29, pp.None, 2016, https://doi.org/10.1016/j.nme.2021.101071
  40. Oxidation behavior of Cr-coated zirconium alloy cladding in high-temperature steam above 1200 °C vol.5, pp.1, 2021, https://doi.org/10.1038/s41529-021-00155-8
  41. Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings at LWR operating temperature by in-situ digital image correlation vol.429, pp.None, 2022, https://doi.org/10.1016/j.surfcoat.2021.127909
  42. Grid-to-rod fretting wear study of SiC/SiC composite accident-tolerant fuel claddings using an autoclave fretting bench test vol.488, pp.None, 2016, https://doi.org/10.1016/j.wear.2021.204172
  43. Influence of crystallinity on the corrosion rate of chemically vapor‐infiltrated SiC f /SiC composites under 310°C hydrothermal condition vol.19, pp.1, 2016, https://doi.org/10.1111/ijac.13821