References
- Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, K.W. Song, KAERI's development of LWR accidenttolerant fuel, Nucl. Technol. 186 (2014) 295-304. https://doi.org/10.13182/NT13-89
- J. Carmack, F. Goldner, S.M. Bragg-Sitton, L.L. Snead, Overview of the U.S. DOE accident tolerant fuel development program, TopFuel 2013, Charlotte, North Carolina, Sep. 15-19, 2013.
- B. Chang, Y.J. Kim, P. Chou, J. Deshon, Development of Moalloy for LWR fuel cladding to enhance fuel tolerance to severe accidents, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013.
- I. Idarraga-Trujillo, M. Le Flem, J-C. Brachet, M. Le Saux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, F. Schuster, Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013.
- H.G. Kim, I.H. Kim, J.Y. Park, Y.H. Koo, Application of Coating Technology on Zr-based Alloy to Decrease High-temperature Oxidation, Zirconium in the Nuclear Industry STP 1543, 2013, http://dx.doi.org/10.1520/STP154320120161.
- B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments, J. Nucl. Mater. 440 (2013) 420-427. https://doi.org/10.1016/j.jnucmat.2013.05.047
- K.A. Terrani, S.J. Zinkel, L.L. Snead, Advanced oxidationresistance iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2013) 420-435.
- J.D. Stempien, D.M. Carpenter, G. Kohse, M.S. Kazimi, Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions, Nucl. Technol. 183 (2013) 13-29. https://doi.org/10.13182/NT12-86
- R. Montgomery, E. Mader, N. Domenico, R. Fawcett, J. Guerci, E. Lahoda, B. Minnick, P. Murray, S. Nesbit, M. Meyer, S.M. Bragg-Sitton, Industry-valued design objectives for advanced LWR fuels and concept screening results, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013.
- S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (2014) 374-379. https://doi.org/10.1016/j.jnucmat.2013.12.005
- J. Bischoff, P. Blanpain, J. Strumpell, Development of Fuels with Enhanced Accident Tolerance, IAEA Technical Meeting on Accident Tolerant Fuel Concepts for LWRs, Oak Ridge National Lab, USA, Oct. 13-14, 2015.
- A.M. Savchenko, V.B. Ivanov, V.V. Novikov, M.V. Skupov, G.V. Kulakov, V.K. Orlov, O.I. Uferov, Y.V. Konovalov, Review of A.A. BOCHVAR Institute activities in developing potentially accident tolerant fuel for LWRs, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015.
- S. Ray, P. Xu, E. Lahoda, L. Hallstadius, F. Boylan, S. Johnson, Westinghouse accident tolerant fuel program-current results & future plans, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015.
- T. Liu, Update of accident tolerant fuel R&D status in China, 4th Meeting of the Expert Group on Accident Tolerant Fuels for Light Water Reactors, PSI, Villingen(Switzerland) Sep. 17-18. 2015.
- W.-J. Kim, D. Kim, J.Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding, Nucl. Eng. Technol. 45 (2013) 565-572. https://doi.org/10.5516/NET.07.2012.084
- S. Ray, S.C. Johnson, E.J. Lahoda, Preliminary assessment of the performance of SiC based accident tolerant fuel in commercial LWR systems, TopFuel 2013, American Nuclear Society, Charlotte, USA, Sep. 15-19, 2013.
- J.H. Yang, K.S. Kim, D.J. Kim, J.H. Kim, J.S. Oh, Y.W. Rhee, Y.H. Koo, Micro-cell UO2 pellets for enhanced accident tolerant fuel, TopFuel 2013, American Nuclear Society, Charlotte, USA, Sep. 15-19, 2013.
-
D.J. Kim, Y.W. Rhee, J.H. Kim, K.S. Kim, J.S. Oh, J.H. Yang, Y.H. Koo, K.W. Song, Fabrication of micro-cell
$UO_2$ -Mo pellet with enhanced thermal conductivity, J. Nucl. Mater. 462 (2015) 289-295. https://doi.org/10.1016/j.jnucmat.2015.04.003 -
J.H. Yang, D.J. Kim, K.S. Kim, Y.H. Koo,
$UO_2$ -UN composites with enhanced uranium density and thermal conductivity, J. Nucl. Mater. 465 (2015) 509-515. https://doi.org/10.1016/j.jnucmat.2015.06.039 - L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (2014) 520-533. https://doi.org/10.1016/j.jnucmat.2013.09.052
- K.A. Terrani, D. Wang, L.J. Ott, R.O. Montgomery, The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents,, J. Nucl. Mater. 448 (2014) 512-519. https://doi.org/10.1016/j.jnucmat.2013.09.051
- G. Brillant, F. Gupta, A. Pasturel, Fission products stability in uranium dioxide, J. Nucl. Mater. 412 (2011) 170-176. https://doi.org/10.1016/j.jnucmat.2011.02.054
- D. Jadernas, F. Corleoni, A. Puranen, P. Tejland, M. Granfors, PCI mitigation using fuel additives, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015.
- H.S. Lee, D.J. Kim, S.W. Kim, J.H. Yang, Y.H. Koo, D.R. Kim, Thermal conductivity of metallic micro-cell fuel pellet with different unit cell geometry, Spring Meeting 2015, Korean Nuclear Society, Jeju(Korea) May 7-8, 2015.
- J.H. Yang, D.J. Kim, K.S. Kim, Y.H. Koo, Thermo-physical property of micro-cell UO2 pellets and high density composite pellets for accident tolerant fuel, IAEA Technical Meeting on Accident Tolerant Fuel Concepts for LWRs, Oak Ridge National Lab., USA, Oct. 13-14, 2015.
- D.J. Kim, J.H. Yang, J.H. Kim, K.S. Kim, Y.W. Rhee, J.S. Oh, Y.H. Koo, Metal network containing micro-cell UO2 pellets for accident tolerant fuel, 11th Pacific Rim Conference of Ceramic Societies, Jeju(Korea) Aug. 30-Sept. 4, 2015.
- B.J. Lewis, W.T. Thompson, F. Akbari, D. Thompson, C. Thurgood, J. Higgs, Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel, J. Nucl. Mater. 328 (2004) 180-196. https://doi.org/10.1016/j.jnucmat.2004.04.336
- J. Spino, P. Peerani, Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: review of data and alternative interpretation of recently published results, J. Nucl. Mater. 375 (2008) 8-25. https://doi.org/10.1016/j.jnucmat.2007.10.007
- D.H. Hwang, S.G. Hong, W.K. In, Evaluation of physical characteristics of PWR cores with accident tolerant fuels, Autumn Meeting 2015, Korean Nuclear Society, Gyeongju(Korea), Oct. 29-30, 2015.
- G.J. Youinou, R.S. Sen, Impact of accident-tolerant fuels and claddings on the overall fuel cycle: a preliminary systems analysis, Nucl. Technol. 188 (2014) 123-128. https://doi.org/10.13182/NT14-22
- M. Uno, T. Nishi, M. Takano, Thermodynamic and thermophysical properties of the actinide nitrides, in: Comprehensive Nuclear Materials, Elsevier, 2012, pp. 61-85.
- J.M. Harp, P.A. Lessing, R.E. Hoggan, Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation, J. Nucl. Mater. 466 (2015) 728-738. https://doi.org/10.1016/j.jnucmat.2015.06.027
-
B.J. Jaques, J. Watkins, J.R. Croteau, G.A. Alanko, B. Tyburska-Puschel, M. Meyer, P. Xu, E.J. Lahoda, D.P. Butt, Synthesis and sintering of UN-
$UO_2$ fuel composites, J. Nucl. Mate.r 466 (2015) 745-754. https://doi.org/10.1016/j.jnucmat.2015.06.029 - P.A. Lessing, INL/EXT-12-24974, Oxidation Protection of Uranium Nitride Fuel Using Liquid Phase Sintering, Idaho National Laboratory, 2012.
- G.A. Rama Rao, S.K. Mukerjee, V.N. Vaidya, V. Venugopal, D.D. Sood, Oxidation and hydrolysis kinetic studies on UN, J. Nucl. Mater. 185 (1991) 231-241. https://doi.org/10.1016/0022-3115(91)90340-D
- K.H. Kim, D.B. Lee, C.K. Kim, G.E. Hofman, K.W. Paik, Characterization U-2wt% Mo and U-10 wt% Mo alloy powders prepared by centrifugal atomization, J. Nucl. Mater. 245 (1997) 179-184. https://doi.org/10.1016/S0022-3115(97)00011-1
- H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, Microstructure and mechanical strength of surface ODS treated Zircaloy-4 sheet using laser beam scanning, Nucl. Eng. Technol. 46 (4) (2014) 521-528. https://doi.org/10.5516/NET.07.2014.027
- H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater. 465 (2015) 531-539. https://doi.org/10.1016/j.jnucmat.2015.06.030
- L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook on SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (2007) 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
- K. Yueh, D. Carpenter, H. Feinroth, Clad in clay, Nucl. Eng. Int. 55 (2010) 14-16.
- K.A. Terrani, B.A. Pint, C.M. Parish, C.M. Silva, L.L. Snead, Y. Katoh, Silicon carbide oxidation in steam up to 2 MPa, J. Am. Ceram. Soc. 97 (2014) 2331-2352. https://doi.org/10.1111/jace.13094
- D. Carpenter, An Assessment of Silicon Carbides as a Cladding Material for Light Water Reactors, Ph.D. thesis, Massachusetts Institute of Technology, 2010.
- Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Radiation effects in SiC for nuclear structural applications, Curr. Opin. Solid State Mater. Sci. 16 (2012) 143-152. https://doi.org/10.1016/j.cossms.2012.03.005
- D. Kim, H.-G. Lee, J.Y. Park,W.-J. Kim, Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications, J. Nucl. Mater. 458 (2015) 29-36. https://doi.org/10.1016/j.jnucmat.2014.11.117
- D. Kim, J. Lee, J.Y. Park, W.-J. Kim, Effect of filament winding methods on surface roughness and fiber volume fraction of SiCf/SiC composite tubes, J. Korean Ceram. Soc. 50 (2013) 359-363. https://doi.org/10.4191/kcers.2013.50.6.359
- D.G.S. Davies, The statistical approach to engineering design in ceramics,, Proc. Br. Ceram. Soc. 22 (1973) 429-452.
-
W.-J. Kim, H.S. Hwang, J.Y. Park, W.-S. Ryu, Corrosion behaviors of sintered and chemically vapor deposited silicon carbide ceramics in water at
$360^{\circ}C$ , J. Mater. Sci. Lett. 22 (2003) 581-584. https://doi.org/10.1023/A:1023390111074 - L. Tan, T.R. Allen, E. Barringer, Effect of microstructure on the corrosion of CVD-SiC exposed to supercritical water, J. Nucl. Mater. 394 (2009) 95-101. https://doi.org/10.1016/j.jnucmat.2009.08.008
-
J.-Y. Park, I.-H. Kim, Y.-I. Jung, H.-G. Kim, D.-J. Park, W.-J. Kim, Long-term corrosion behavior of CVD SiC in
$360^{\circ}C$ water and$400^{\circ}C$ steam, J. Nucl. Mater. 433 (2013) 603-607. -
C.H. Henager Jr., A.L. Schemer-Kohrn, S.G. Pitman, D.J. Senor, K.J. Geelhood, C.L. Painter, Pitting corrosion in CVD SiC at
$300^{\circ}C$ in deoxygenated high-purity water, J. Nucl. Mater. 378 (2008) 9-16. https://doi.org/10.1016/j.jnucmat.2008.03.025 - D. Kim, H.-G. Lee, J.Y. Park, J.-Y. Park, W.-J. Kim, Effect of dissolved hydrogen on the corrosion behavior of chemically vapor deposited SiC in a simulated pressurized water reactor environment, Corros. Sci. 98 (2015) 304-309. https://doi.org/10.1016/j.corsci.2015.05.031
Cited by
- Fibre-reinforced multifunctional SiC matrix composite materials vol.62, pp.3, 2017, https://doi.org/10.1080/09506608.2016.1213939
- Big Data Analysis of Public Acceptance of Nuclear Power in Korea vol.49, pp.4, 2016, https://doi.org/10.1016/j.net.2016.12.015
- Performance degradation of candidate accident-tolerant cladding under corrosive environment vol.35, pp.3, 2016, https://doi.org/10.1515/corrrev-2017-0014
- Performance degradation of candidate accident-tolerant cladding under corrosive environment vol.35, pp.3, 2016, https://doi.org/10.1515/corrrev-2017-0014
- Thermal shock resistance and hoop strength of triplex silicon carbide composite tubes vol.14, pp.6, 2016, https://doi.org/10.1111/ijac.12753
- Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes vol.50, pp.2, 2016, https://doi.org/10.1016/j.net.2017.12.001
- AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding vol.50, pp.2, 2016, https://doi.org/10.1016/j.net.2017.12.004
- Development status of microcell UO2 pellet for accident-tolerant fuel vol.50, pp.2, 2016, https://doi.org/10.1016/j.net.2017.12.008
- Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance vol.50, pp.2, 2018, https://doi.org/10.1016/j.net.2017.12.011
- TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure vol.502, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2018.01.055
- Preparation and Characterization of SiC Nanoparticles for ATF-FCM vol.281, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/ssp.281.22
- Studies on magnetron-sputtered zirconium-silicide coatings deposited on zirconium alloy for the enhancement of their high-temperature oxidation resistance vol.63, pp.3, 2016, https://doi.org/10.2478/nuka-2018-0009
- High dose self-ion irradiation of silicon carbide with nanostructured ferritic alloy aid vol.54, pp.1, 2016, https://doi.org/10.1007/s10853-018-2824-0
- Influence of the Cr interlayer on the microstructure of sputtered TiN coatings deposited on zirconium alloy vol.6, pp.2, 2016, https://doi.org/10.1088/2053-1591/aaf041
- Density functional theory calculations of self- and Xe diffusion in U3Si2 vol.515, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2018.12.021
- Corrosion and high-temperature steam oxidation of E110 alloy and its laser welds after ion irradiation vol.152, pp.None, 2016, https://doi.org/10.1016/j.corsci.2019.02.031
- Multiscale modeling of fission gas behavior in U3Si2 under LWR conditions vol.522, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.04.037
- Development of FRACAS-CT module with FRAPCON4.0P01 for simulation of mechanical behaviors for accident-tolerant fuel cladding in a reactor vol.56, pp.8, 2016, https://doi.org/10.1080/00223131.2019.1624653
- Chemical compatibility of silicon carbide in molten fluoride salts for the fluoride salt-cooled high temperature reactor vol.524, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2019.07.001
- Corrosion behavior of Fe–Cr–Si alloys in simulated PWR primary water environment vol.526, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.07.035
- Separate effects irradiation testing of miniature fuel specimens vol.526, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.151783
- Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors vol.31, pp.3, 2016, https://doi.org/10.1007/s41365-020-0741-9
- Development of a grain growth model for U3Si2 using experimental data, phase field simulation and molecular dynamics vol.532, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2020.152069
- High temperature steam oxidation dynamics of U3Si2 with alloying additions: Al, Cr, and Y vol.533, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2020.152072
- Microstructure evolution in MA956 neutron irradiated in ATR at 328 °C to 4.36 dpa vol.533, pp.None, 2020, https://doi.org/10.1016/j.jnucmat.2020.152094
- U3Si2 and UO2 composites densified by spark plasma sintering for accident-tolerant fuels vol.534, pp.None, 2020, https://doi.org/10.1016/j.jnucmat.2020.152147
- Ion irradiation effects on Cr-coated zircaloy-4 surface wettability and pool boiling critical heat flux vol.362, pp.None, 2016, https://doi.org/10.1016/j.nucengdes.2020.110581
- Spark plasma sintering (SPS) densified U3Si2 pellets: Microstructure control and enhanced mechanical and oxidation properties vol.825, pp.None, 2020, https://doi.org/10.1016/j.jallcom.2020.154022
- Influence of Laser Energy Density on Interfacial Diffusion Bonding and Surface Density of Chromium Coating by Multi-Arc Ion Plating on Zirconium Alloy vol.10, pp.6, 2016, https://doi.org/10.3390/coatings10060565
- Effect of surface characteristics and environmental aging on wetting of Cr-coated Zircaloy-4 accident tolerant fuel cladding material vol.535, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2020.152163
- Application and Development Progress of Cr-Based Surface Coatings in Nuclear Fuel Element: I. Selection, Preparation, and Characteristics of Coating Materials vol.10, pp.9, 2016, https://doi.org/10.3390/coatings10090808
- Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4 vol.541, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2020.152420
- Investigation of Microstructure and Nanoindentation Hardness of C + & He + Irradiated Nanocrystal SiC Coatings during Annealing and Corrosion vol.13, pp.23, 2016, https://doi.org/10.3390/ma13235567
- Zr2Al3C4 Coatings on Zirconium-alloy Substrates with Enhanced Adhesion and Diffusion Barriers by Al/Mo-C Interlayers vol.36, pp.5, 2016, https://doi.org/10.15541/jim20200286
- Friction and Wear Properties of CrAl-Based Coatings for Nuclear Fuel Cladding vol.9, pp.None, 2021, https://doi.org/10.3389/fenrg.2021.622708
- Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout vol.213, pp.None, 2016, https://doi.org/10.1016/j.ress.2021.107770
- In-situ synthesized nanocrystalline UO2/SiC composite with superior thermal conductivity vol.47, pp.22, 2016, https://doi.org/10.1016/j.ceramint.2021.07.290
- Corrosion Behavior of Chromium Coated Zy-4 Cladding under CANDU Primary Circuit Conditions vol.11, pp.11, 2016, https://doi.org/10.3390/coatings11111417
- Influence of the structural state and crystallographic texture of Zr-2.5% Nb alloy samples on the anisotropy of their thermal expansion vol.29, pp.None, 2016, https://doi.org/10.1016/j.nme.2021.101071
- Oxidation behavior of Cr-coated zirconium alloy cladding in high-temperature steam above 1200 °C vol.5, pp.1, 2021, https://doi.org/10.1038/s41529-021-00155-8
- Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings at LWR operating temperature by in-situ digital image correlation vol.429, pp.None, 2022, https://doi.org/10.1016/j.surfcoat.2021.127909
- Grid-to-rod fretting wear study of SiC/SiC composite accident-tolerant fuel claddings using an autoclave fretting bench test vol.488, pp.None, 2016, https://doi.org/10.1016/j.wear.2021.204172
- Influence of crystallinity on the corrosion rate of chemically vapor‐infiltrated SiC f /SiC composites under 310°C hydrothermal condition vol.19, pp.1, 2016, https://doi.org/10.1111/ijac.13821