• Title/Summary/Keyword: Cladding deformation

Search Result 54, Processing Time 0.054 seconds

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Design of stepwise foam claddings subjected to air-blast based on Voronoi model

  • Liang, Minzu;Lu, Fangyun;Zhang, Guodong;Li, Xiangyu
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • Design of stepwise foam claddings subjected to air-blast is performed based on random Voronoialgorithm. FE models are constructed using the random Voronoialgorithm, and numerical analysis is carried out to simulate deformation mode and energy absorption of the cladding by the ABAQUS/Explicit software. The FE model is validated by test result, and good agreement is achieved. The deformation patterns are presented to give an insight into the influences of distribution on deformation mechanisms. The energy absorbed by the stepwise foam cladding is examined, and the parameter effects, including layer number, gradient, and blast loading, are discussed. Results indicate that the energy absorption capacity increases with the number of layer, gradient degree, and blast pressure increasing.

Analysis of cladding failure in a BWR fuel rod using a SLICE-DO model of the FALCON code

  • Khvostov, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2887-2900
    • /
    • 2020
  • Cladding failure in a fuel rod during operation in a BWR is analyzed using a FALCON code-based model. Comparative calculation with a neighbouring, intact rod is presented, as well. A considerable 'hot spot' effect in cladding temperature is predicted with the SLICE-DO model due to a thermal barrier caused by the localized crud deposition. Particularly significant overheating is expected to occur on the affected side of the cladding of the failed rod, in agreement with signs of significant localized crud deposition as revealed by Post Irradiation Examination. Different possibilities (criteria) are checked, and Pellet-Cladding Mechanical Interaction (PCMI) is shown to be one of the plausible potential threats. It is shown that PCMI could lead to discernible concentrated inelastic deformation in the overheated part of the cladding. None of the specific mechanisms considered can be experimentally or analytically identified as an only cause of the rod failure. However, according to the current calculation, a possibility of cladding failure by PCMI cannot be excluded if the crud thickness exceeded 300 ㎛.

Deformation behavior, evolution of strain states and textures during roll cladding of five ply composite sheets (5겹 복합판재 시료의 압연시 각 판재 층의 변형상태 및 집합조직의 형성)

  • Kim, J.K.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.413-416
    • /
    • 2006
  • Two clad composites of five ply sheets comprising STS430/AA3003/AA3003/AA3003/STS430 and STS430/AA3003/STS430/AA3003/STS430 were produced by roll cladding at $350^{\circ}C$. In order to clarify the deformation behavior and strain states in the composites during roll cladding, the variation of individual sheet thickness and the evolution of through thickness textures and microstructures of the composites were investigated. The thickness reduction of each sheet depended on the location of the sheet and on the strength of each sheet in the composites. In order to elucidate the evolution of textures and microstructures in AA3003 sheets, the strain states in AA3003 sheets during roll cladding were calculated by FEM. The formation of shear textures and fine grains in AA3003 sheet was discussed in terms of the strain states in each sheet layer. Finally, the strain states extracted from the FEM were verified by texture simulations

  • PDF

Preliminary study on the thermal-mechanical performance of the U3Si2/Al dispersion fuel plate under normal conditions

  • Yang, Guangliang;Liao, Hailong;Ding, Tao;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3723-3740
    • /
    • 2021
  • The harsh conditions in the reactor affect the thermal and mechanical performance of the fuel plate heavily. Some in-pile behaviors, like fission-induced swelling, can cause a large deformation of fuel plate at very high burnup, which may even disturb the flow of coolant. In this research, the emphasis is put on the thermal expansion, fission-induced swelling, interaction layer (IL) growth, creep of the fuel meat, and plasticity of the cladding for the U3Si2/Al dispersion fuel plate. A detailed model of the fuel meat swelling is developed. Taking these in-pile behaviors into consideration, the three-dimensional large deformation incremental constitutive relations and stress update algorithms have been developed to study its thermal-mechanical performance under normal conditions using Abaqus. Results have shown that IL can effectively decrease the thermal conductivity of fuel meat. The high Mises stress region mainly locates at the interface between fuel meat and cladding, especially around the side edge of the interface. With irradiation time increasing, the stress in the fuel plate gets larger resulting from the growth of fuel meat swelling but then decreases under the effect of creep deformation. For the cladding, plasticity deformation does not occur within the irradiation time.

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

Study on Strain States during Roll-Cladding of Stainless Steel and Aluminum (스테인리스강과 알루미늄 롤-클래드 시 변형상태 연구)

  • Kim J. K.;Huh M. Y.;Jee K. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.221-224
    • /
    • 2004
  • The clad samples of five plies of sheets comprising ferritic stainless steel (STS) and aluminum (Al) were prepared by roll-cladding at $350^{\circ}C$. The evolution of strain states and textures during roll-cladding of STS430/AA3003/AA3003/AA3 003/STS430 and STS430/AA3003/STS430/AA3003/STS430 was investigated by measurements of crystallographic textures and by simulations with the finite element method (FEM). Because the deformation mainly occurs in the Al layer during roll-cladding, the present investigation was focused on the Al layers located. The stacking sequence of sheet materials in the clad samples played an important role in the evolution of strain states during roll-cladding.

  • PDF

Performance Analysis of The KALIMER Breakeven Core Driver Fuel Pin Based on Conceptual Design Parameters

  • Lee Dong Uk;Lee Byoung Oon;Kim Young Gyun;Lee Ki Bog;Jang Jin Wook
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.356-368
    • /
    • 2003
  • Material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the updated driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the end of life is predicted to be $68.61\%$ and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is $1.93\%$, satisfying the preliminary design criterion ($3\%$) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc.

Thermo-Mechanical Analysis for Metallic Fuel Pin under Transient Condition

  • Lee, Dong-Uk;Lee, Byoung-Oon;Kim, Yeong-Il;Hahn, Dohee
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.181-190
    • /
    • 2004
  • Computational models for analyzing the in-reactor behavior of metallic fuel pins under transient conditions in liquid-metal reactors are developed and implemented in the TRAMAC (TRAnsient thermo-Mechanical Analysis Code) for a metal fuel rod under transient operation conditions. Not only the basic models for a fuel rod performance but also some sub-models used for transient condition are installed in TRAMAC. Among the models, a fission gas release model, which takes the multi-bubble size distribution into account to characterize the lenticular bubble shape and the saturation condition on the grain boundary and the cladding deformation model have been developed based mainly on the existing models in the MAC-SIS code. Finally, cladding strains are calculated from the amount of thermal creep, irradiation creep, and irradiation swelling. The cladding strain model in TRAMAC predicts well the absolute magnitudes and gen-eral trends of their predictions compared with those of experimental data. TRAMAC results for the FH-1,2,6 pins are more conservative than experimental data and relatively reasonable than those of FPIN2 code. From the calculation results of TRAMAC, it is apparent that the code is capable of predicting fission gas release, and cladding deformation for LMR metal fuel finder transient operation conditions. The results show that in general, the predictions of TRAMAC agree well with the available irradiation data.