Browse > Article
http://dx.doi.org/10.12989/scs.2017.23.1.107

Design of stepwise foam claddings subjected to air-blast based on Voronoi model  

Liang, Minzu (College of Science, National University of Defense Technology)
Lu, Fangyun (College of Science, National University of Defense Technology)
Zhang, Guodong (College of Science, National University of Defense Technology)
Li, Xiangyu (College of Science, National University of Defense Technology)
Publication Information
Steel and Composite Structures / v.23, no.1, 2017 , pp. 107-114 More about this Journal
Abstract
Design of stepwise foam claddings subjected to air-blast is performed based on random Voronoialgorithm. FE models are constructed using the random Voronoialgorithm, and numerical analysis is carried out to simulate deformation mode and energy absorption of the cladding by the ABAQUS/Explicit software. The FE model is validated by test result, and good agreement is achieved. The deformation patterns are presented to give an insight into the influences of distribution on deformation mechanisms. The energy absorbed by the stepwise foam cladding is examined, and the parameter effects, including layer number, gradient, and blast loading, are discussed. Results indicate that the energy absorption capacity increases with the number of layer, gradient degree, and blast pressure increasing.
Keywords
Voronoi; air-blast; foam; cladding;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Wang, P., Xu, S., Li, Z., Yang, J., Zhang, C., Zheng, H. and Hu, S. (2015), "Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading", Mater. Sci. Eng., A, 620, 253-261.   DOI
2 Xie, Z., Yan, Q. and Li, X. (2014), "Investigation on low velocity impact on a foam core composite sandwich panel", Steel Compos. Struct., Int. J., 17(2), 159-172.   DOI
3 Xue, Z. and Hutchinson, J.W. (2006), "Crush dynamics of square honeycomb sandwich cores", Int. J. Numer. Methods Eng., 65(13), 2221-2245.   DOI
4 Ye, Z.Q. and Ma, G.W. (2007), "Effects of foam claddings for structure protection against blast loads", J. Eng. Mech., 133(1), 41-47.   DOI
5 Yurddaskal, M. and Baba, B.O. (2016), "The effect of curvature on the impact response of foam-based sandwich composite panels", Steel Compos. Struct., Int. J., 20(5), 983-997.   DOI
6 Zhang, J., Wang, Z. and Zhao, L. (2016), "Dynamic response of functionally graded cellular materials based on the Voronoi model", Compos. Part B, 85, 176-187.   DOI
7 Zheng, Z., Yu, J. and Li, J. (2005), "Dynamic crushing of 2D cellular structures: A finite element study", Int. J. Impact Eng., 32(1-4), 650-664.   DOI
8 Zheng, Z., Yu, J., Wang, C., Liao, S. and Liu, Y. (2013), "Dynamic crushing of cellular materials: A unified framework of plastic shock wave models", Int. J. Impact Eng., 53, 29-43.   DOI
9 Zheng, Z., Wang, C., Yu, J., Reid, S.R. and Harrigan, J.J. (2014), "Dynamic stress-strain states for metal foams using a 3D cellular model", J. Mech. Phys. Solids, 72, 93-114.   DOI
10 Zheng, J., Qin, Q. and Wang, T.J. (2016), "Impact plastic crushing and design of density-graded cellular materials", Mech. Mater., 94, 66-78.   DOI
11 Zhou, H., Wang, X. and Zhao, Z. (2016), "High velocity impact mitigation with gradient cellular solids", Compos. Part B, 85, 93-101.   DOI
12 Zhu, H.X., Hobdell, J.R. and Windle, A.H. (2001), "Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs", J. Mech. Phys. Solids, 49(4), 857-870.   DOI
13 Zhu, H.X., Thorpe, S.M. and Windle, A.H. (2006), "The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs", Int. J. Solids Struct., 43(5), 1061-1078.   DOI
14 Darvizeh, R. and Davey, K. (2015), "A transport approach for analysis of shock waves in cellular materials", Int. J. Impact Eng., 82, 59-73.   DOI
15 Ajdari, A., Nayeb-Hashemi, H. and Vaziri, A. (2011), "Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures", Int. J. Solids Struct., 48(3-4), 506-516.   DOI
16 Aleyaasin, M., Harrigan, J.J. and Reid, S.R. (2015), "Air-blast response of cellular material with a face plate: An analytical-numerical approach", Int. J. Mech. Sci., 91, 64-70.   DOI
17 Chuda-Kowalska, M. and Garstecki, A. (2016), "Experimental study of anisotropic behavior of PU foam used in sandwich panels", Steel Compos. Struct., Int. J., 20(1), 43-56.   DOI
18 Dobratz, B.M. (1981), "Properties of chemical explosives and explosive simulants", International Journal of Neuroscience, 51(3-4), 339-340.
19 Gama, B.A., Bogetti, T.A., Fink, B.K., Yu, C.-J., Dennis Claar, T., Eifert, H.H. and Gillespie, Jr. J.W. (2001), "Aluminum foam integral armor: a new dimension in armor design", Compos. Struct., 52(3-4), 381-395.   DOI
20 Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK.
21 Karagiozova, D. and Alves, M. (2014), "Compaction of a doublelayered metal foam block impacting a rigid wall", Int. J. Solids Struct., 51(13), 2424-2438.   DOI
22 Guruprasad, S. and Mukherjee, A. (2000b), "Layered sacrificial claddings under blast loading Part II - Experimental studies", Int. J. Impact Eng., 24(9), 975-984.   DOI
23 Hanssen, A.G., Enstock, L. and Langseth, M. (2002), "Close-range blast loading of aluminium foam panels", Int. J. Impact Eng., 27(6), 593-618.   DOI
24 Honig, A. and Stronge, W.J. (2002), "In-plane dynamic crushing of honeycomb. Part II: Application to impact", Int. J. Mech. Sci., 44(8), 1697-1714.   DOI
25 Li, F., Sun, G., Huang, X., Rong, J. and Li, Q. (2015b), "Multiobjective robust optimization for crashworthiness design of foam filled thin-walled structures with random and interval uncertainties", Eng. Struct., 88, 111-124.   DOI
26 Karagiozova, D. and Alves, M. (2015), "Propagation of compaction waves in cellular materials with continuously varying density", Int. J. Solids Struct., 71, 323-337.   DOI
27 Karagiozova, D., Langdon, G.S. and Nurick, G.N. (2010), "Blast attenuation in Cymat foam core sacrificial claddings", Int. J. Mech. Sci., 52(5), 758-776.   DOI
28 Li, S., Lu, G., Wang, Z., Zhao, L. and Wu, G. (2015a), "Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading", Int. J. Mech. Sci., 96-97, 1-12.   DOI
29 Liao, S., Zheng, Z. and Yu, J. (2013), "Dynamic crushing of 2D cellular structures: Local strain field and shock wave velocity", Int. J. Impact Eng., 57, 7-16.   DOI
30 Guruprasad, S. and Mukherjee, A. (2000a), "Layered sacrificial claddings under blast loading Part I - Analytical studies", Int. J. Impact Eng., 24(9), 957-973.   DOI
31 Mines, R.A.W. (2004), "A one-dimensional stress wave analysis of a lightweight composite armour", Compos. Struct., 64(1), 55-62.   DOI
32 Liu, Y.D., Yu, J.L., Zheng, Z.J. and Li, J.R. (2009), "A numerical study on the rate sensitivity of cellular metals", Int. J. Solids Struct., 46(22-23), 3988-3998.   DOI
33 Ma, G.W. and Ye, Z.Q. (2007), "Analysis of foam claddings for blast alleviation", Int. J. Impact Eng., 34(1), 60-70.   DOI
34 Ma, G.W., Ye, Z.Q. and Shao, Z.S. (2009), "Modeling loading rate effect on crushing stress of metallic cellular materials", Int. J. Impact Eng., 36(6), 775-782.   DOI
35 Main, J.A. and Gazonas, G.A. (2008), "Uniaxial crushing of sandwich plates under air blast: Influence of mass distribution", Int. J. Solids Struct., 45(7-8), 2297-2321.   DOI
36 Merrett, R.P., Langdon, G.S. and Theobald, M.D. (2013), "The blast and impact loading of aluminium foam", Mater. Des., 44, 311-319.   DOI
37 Reid, S.R. and Peng, C. (1997), "Dynamic uniaxial crushing of wood", Int. J. Impact Eng., 19(5-6), 531-570.   DOI
38 Shen, C.J., Lu, G. and Yu, T.X. (2014), "Investigation into the behavior of a graded cellular rod under impact", Int. J. Impact Eng., 74, 92-106.   DOI
39 Shen, J., Lu, G., Zhao, L. and Zhang, Q. (2013), "Short sandwich tubes subjected to internal explosive loading", Eng. Struct., 55, 56-65.   DOI
40 Tan, P.J., Reid, S.R., Harrigan, J.J., Zou, Z. and Li, S. (2005), "Dynamic compressive strength properties of aluminium foams. Part II-'shock' theory and comparison with experimental data and numerical models", J. Mech. Phys. Solids, 53(10), 2206-2230.   DOI
41 Wang, X., Zheng, Z. and Yu, J. (2013), "Crashworthiness design of density-graded cellular metals", Theor. Appl. Mech. Lett., 3(3), 031001-031001-031005.