• 제목/요약/키워드: Civil engineering work

검색결과 2,014건 처리시간 0.022초

문화재 감리업무 개선방안 연구 (Improvement of Supervision Work in Cultural Heritage Repair)

  • 박환표;한재구;김경훈
    • 한국건축시공학회지
    • /
    • 제20권1호
    • /
    • pp.61-71
    • /
    • 2020
  • 문화재청은 문화재수리의 부실방지 및 품질확보를 위하여 상주감리와 비상주감리 제도를 운영하고 있다. 최근 문화재 수리의 감리강화를 위하여 책임감리제도를 도입하였으나, 문화재감리의 운영상 문제점이 발생하여 감리업무의 개선이 필요하게 되었다. 따라서 본 연구는 문화재의 상주감리, 비상주감리업무 개선과 책임감리의 업무를 개발하였다. 첫째, 문화재 상주감리업무지침서의 불합리한 부문과 문제점을 도출하여, 개선방안을 제안하였다. 둘째, 문화재 비상주감리 업무지침서의 불합리한 부문과 문제점을 도출하여, 비상주 감리업무지침서 개선방안을 제안하였다. 셋째, 문화재 책임감리업무를 수행하기 위한 개발방향 및 감리업무를 제안하였다.

New energy partitioning method in essential work of fracture (EWF) concept for 3-D printed pristine/recycled HDPE blends

  • Sukjoon Na;Ahmet Oruc;Claire Fulks;Travis Adams;Dal Hyung Kim;Sanghoon Lee;Sungmin Youn
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.11-18
    • /
    • 2023
  • This study explores a new energy partitioning approach to determine the fracture toughness of 3-D printed pristine/recycled high density polyethylene (HDPE) blends employing the essential work of fracture (EWF) concept. The traditional EWF approach conducts a uniaxial tensile test with double-edge notched tensile (DENT) specimens and measures the total energy defined by the area under a load-displacement curve until failure. The approach assumes that the entire total energy contributes to the fracture process only. This assumption is generally true for extruded polymers that fracture occurs in a material body. In contrast to the traditional extrusion manufacturing process, the current 3-D printing technique employs fused deposition modeling (FDM) that produces layer-by-layer structured specimens. This type of specimen tends to include separation energy even after the complete failure of specimens when the fracture test is conducted. The separation is not relevant to the fracture process, and the raw experimental data are likely to possess random variation or noise during fracture testing. Therefore, the current EWF approach may not be suitable for the fracture characterization of 3-D printed specimens. This paper proposed a new energy partitioning approach to exclude the irrelevant energy of the specimens caused by their intrinsic structural issues. The approach determined the energy partitioning location based on experimental data and observations. Results prove that the new approach provided more consistent results with a higher coefficient of correlation.

A STUDY ON SPACE ZONING BY COMPUTING IDLE-TIMES IN CONSTRUCTION PROCESSES

  • Sang-Min Park;Won-Suk Jang;Dong-Eun Lee
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.509-512
    • /
    • 2013
  • An inappropriate space zoning plan causes the unnecessary transportation of construction material and equipment among work areas and increases the disorder of work space. Space zoning is an essential operation management technique which contributes to reduce the process and/or operation idle-time. This paper introduces a method that computes the idle-times between construction operations (or processes) by using Web-CYCLONE. It allows computing with idle-times that affect the construction productivity. Using the idle time between operations and between processes, it computes the optimal number of zones and finds the optimal combination of zones that minimize the idle times. The method contributes to minimize the idle times relative to the operation schedule using complete enumeration. This paper presents the system prototype in detail. A case study is presented to demonstrate the system and verifies the validity of the model. It allows a project manager to establish space zoning plan that effectively segregates a project into optimal number of construction zones and to assign the constrained resources (e.g., laborer, equipment).

  • PDF

Modeling mesoscale uncertainty for concrete in tension

  • Tregger, Nathan;Corr, David;Graham-Brady, Lori;Shah, Surendra
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.347-362
    • /
    • 2007
  • Due to heterogeneities at all scales, concrete exhibits significant variability in mechanical behavior from sample to sample. An understanding of the fundamental mechanical performance of concrete must therefore be embedded in a stochastic framework. The current work attempts to address the connection between a two-dimensional concrete mesostructure and the random local material properties associated within that mesostructure. This work builds on previous work that has focused on the random configuration of concrete mesostructures. This was accomplished by developing an understanding of the effects of variations in the mortar strength and the mortar-aggregate interfacial strength in given deterministic mesostructural configurations. The results are assessed through direct tension tests that are validated by comparing experimental results of two different, pre-arranged mesostructures, with the intent of isolating the effect of local variations in strength. Agreement is shown both in mechanical property values as well as the qualitative nature of crack initiation and propagation.

Experimental work on seismic behavior of various types of masonry infilled RC frames

  • Misir, I. Serkan;Ozcelik, Ozgur;Girgin, Sadik Can;Kahraman, Serap
    • Structural Engineering and Mechanics
    • /
    • 제44권6호
    • /
    • pp.763-774
    • /
    • 2012
  • Reinforced concrete frame structures with masonry infill walls constitute the significant portion of the building stock in Turkey. Therefore it is very important to understand the behavior of masonry infill frame structures under earthquake loads. This study presents an experimental work performed on reinforced concrete (RC) frames with different types of masonry infills, namely standard and locked bricks. Earthquake effects are induced on the RC frames by quasi-static tests. Results obtained from different frames are compared with each other through various stiffness, strength, and energy related parameters. It is shown that locked bricks may prove useful in decreasing the problems related to horizontal and vertical irregularities defined in building codes. Moreover tests show that locked brick infills maintain their integrity up to very high drift levels, showing that they may have a potential in reducing injuries and fatalities related to falling hazards during severe ground shakings.

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah;Ozutok, Atilla
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.97-108
    • /
    • 2020
  • This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations

  • Refrafi, Salah;Bousahla, Abdelmoumen Anis;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.311-325
    • /
    • 2020
  • In this research work, the hygrothermal and mechanical buckling responses of simply supported FG sandwich plate seated on Winkler-Pasternak elastic foundation are investigated using a novel shear deformation theory. The current model take into consideration the shear deformation effects and ensures the zero shear stresses on the free surfaces of the FG-sandwich plate without requiring the correction factors "Ks". The material properties of the faces sheets of the FG-sandwich plate are assumed varies as power law function "P-FGM" and the core is isotropic (purely ceramic). From the virtual work principle, the stability equations are deduced and resolved via Navier model. The hygrothermal effects are considered varies as a nonlinear, linear and uniform distribution across the thickness of the FG-sandwich plate. To check and confirm the accuracy of the current model, a several comparison has been made with other models found in the literature. The effects the temperature, moisture concentration, parameters of elastic foundation, side-to-thickness ratio, aspect ratio and the inhomogeneity parameter on the critical buckling of FG sandwich plates are also investigated.

Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory

  • Djidar, Fatima Zohra;Hebali, Habib;Amara, Khaled;Tounsi, Abdelouahed;Bendaho, Boudjema;Ghazwani, M.H.;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.725-734
    • /
    • 2022
  • This work presents a simple exponential shear deformation theory for the flexural and free vibration responses of thick bridge deck. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only two variables. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency of the proposed theory. Good agreement is achieved of the present results with those of higher order shear deformation theory (HSDT) and elasticity theory. Moreover, results demonstrate that the developed two variable refined plate theory is simple for solving the flexural and free vibration responses of thick bridge deck and can achieve the same accuracy of the existing HSDTs which have more number of variables.

Study of the Anisotropy of the Roller Compacted Concrete (RCC) for Pavement

  • Zdiri, Mustapha;Abriak, Nor-edine;Ouezdou, Mongi Ben;Neji, Jamel
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.45-49
    • /
    • 2010
  • The roller compacted concrete (RCC) is supposed to be isotropic, whereas the compaction of this material, which is achieved using the same machines used for the soil, appears only unidirectional, making the RCC an anisotropic material. In this experimental work, the influence of the phenomenon of compaction on the isotropy of the RCC is studied. This study was carried out through an evaluation of the compressive strengths and ultrasonic tests which were used for measurements of the elastic modulus and the dynamic Poisson's ratio of the RCC as well as a qualitative judgement of the RCC aspect at the hardened state. The results of this work proved the anisotropy of the RCC and they showed the sensitivity of the mechanical strengths and the elastic modulus to the compaction direction.

On modeling of fire resistance tests on concrete and reinforced-concrete structures

  • Ibrahimbegovic, Adnan;Boulkertous, Amor;Davenne, Luc;Muhasilovic, Medzid;Pokrklic, Ahmed
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.285-301
    • /
    • 2010
  • In this work we first review the statistical data on large fires in urban areas, presenting a detailed list of causes of fires, the type of damage to concrete and reinforced concrete structures. We also present the modern experimental approach for studying the fire-resistance of different structural components, along with the role of numerical modeling to provide more detailed information on quantifying the temperature and heat flux fields. In the last part of this work we provide the refined models for assessment of fire-induced damage in structures built of concrete and/or reinforced-concrete. We show that the refined models of this kind are needed to provide a more thorough explanation of damage and to complete the damage assessment and post-fire evaluations.