• Title/Summary/Keyword: Civil code

Search Result 1,178, Processing Time 0.028 seconds

A Progressive Failure Analysis Procedure for Composite Laminates I - Anisotropic Plastic Constitutive Model (복합재료 거동특성의 파괴해석 I - 이방성 소성 적합모델)

  • Yi, Gyu-Sei
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • A progressive failure analysis procedure for composite laminates is developed in here and in the companion paper. An anisotropic plastic constitutive model for fiber-reinforced composite material, is developed, which is simple and efficient to be implemented into computer program for a predictive analysis procedure of composites. In current development of the constitutive model, an incremental elastic-plastic constitutive model is adopted to represent progressively the nonlinear material behavior of composite materials until a material failure is predicted. An anisotropic initial yield criterion is established that includes the effects of different yield strengths in each material direction, and between tension and compression. Anisotropic work-hardening model and subsequent yield surface are developed to describe material behavior beyond the initial yield under the general loading condition. The current model is implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS), and is presented in the companion paper. The accuracy and efficiency of the anisotropic plastic constitutive model are verified by solving a number of various fiber-reinforced composite laminates with and without geometric discontinuity. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model.

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

3D Shape Descriptor for Segmenting Point Cloud Data

  • Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.643-651
    • /
    • 2012
  • Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).

Reliability Analysis Modeling for LRFD Design of Bridge Abutments (LRFD 설계를 위한 교대의 신뢰성 해석 모델)

  • Eom, Jun-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.5-11
    • /
    • 2014
  • The objective of this paper is to develop a rational reliability analysis procedure for the LRFD design provisions of bridge substructures. A bridge abutments is considered in this study. The reliability analysis is applied to determine the relationship between the major design parameters for bridge abutment and reliability index. The considered load components include dead load, vertical and horizontal earth pressure, earth surcharge, and vehicle live load. Several limit states are considered: foundation bearing capacity, sliding, and overturning. The analysis results show that the most important parameter in the reliability analysis is the effective stress friction angle of the soil. The reliability indices are calculated using Monte Carlo simulations for a selected bridge abutment. The results of the sensitivity analysis indicate that reliability index is most sensitive with regard to resistance factor and horizontal earth pressure factor.

Linear Seismic Performance Evaluation Procedure of the Low-Rise Reinforced Concrete Facilities (저층 철근 콘크리트 시설물 선형 내진 성능 평가)

  • Kim, Doo-Hwan;Jeong, Ui-Do;Song, Kwan Kwon;Kim, Seong Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • Following a 5.8 magnitude earthquake on September 12, 2016 in Gyeongju Province, a magnitude 5.4 earthquake occurred in the northern region of Pohang City on November 15, 2017 in South Korea. Only 7.9 % of the building structures are earthquake-resistant, according to the recent survey conducted by the government agencies in October 2017. In this paper, the linear analysis seismic performance evaluation procedure of the existing school structures presented in the revised methodology(Seismic Performance Evaluation Procedure and Rehabilitation Manual for School Facilities) was introduced. In this paper, the linear analysis evaluation procedure presented in the revised methodology was introduced and the seismic performance index of the example structure was evaluated using the linear analysis evaluation procedure. The seismic retrofit was verified by the linear and nonlinear dynamic analyses using Perform 3D. The analysis results show that the dissipated inelastic energy is concentrated on the retrofitted shear wall and the maximum inter-story drift of the stadium model structure with damping system satisfies the requirement of the current code.

Development of an R-based Spatial Downscaling Tool to Predict Fine Scale Information from Coarse Scale Satellite Products

  • Kwak, Geun-Ho;Park, No-Wook;Kyriakidis, Phaedon C.
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.89-99
    • /
    • 2018
  • Spatial downscaling is often applied to coarse scale satellite products with high temporal resolution for environmental monitoring at a finer scale. An area-to-point regression kriging (ATPRK) algorithm is regarded as effective in that it combines regression modeling and residual correction with area-to-point kriging. However, an open source tool or package for ATPRK has not yet been developed. This paper describes the development and code organization of an R-based spatial downscaling tool, named R4ATPRK, for the implementation of ATPRK. R4ATPRK was developed using the R language and several R packages. A look-up table search and batch processing for computation of ATP kriging weights are employed to improve computational efficiency. An experiment on spatial downscaling of coarse scale land surface temperature products demonstrated that this tool could generate downscaling results in which overall variations in input coarse scale data were preserved and local details were also well captured. If computational efficiency can be further improved, and the tool is extended to include certain advanced procedures, R4ATPRK would be an effective tool for spatial downscaling of coarse scale satellite products.

Flexural strengthening of RC Beams with low-strength concrete using GFRP and CFRP

  • Saribiyik, Ali;Caglar, Naci
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.825-845
    • /
    • 2016
  • The Turkish Earthquake Code was revised in 1998 and 2007. Before these Codes, especially 1998, reinforced concrete (RC) beams with low flexural and shear strength were widely used in the building. In this study, the RC specimens have been produced by taking into consideration the RC beams with insufficient shear and tensile reinforcement having been manufactured with the use of concrete with low strength. The performance of the RC specimens strengthened with different wrapping methods by using of Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced Polymer (GFRP) composites have been examined in terms of flexural strength, ductility and energy absorption capacity. In the strengthening of the RC elements, the use of GFRP composites instead of CFRP composites has also been examined. For this purpose, the experimental results of the RC specimens strengthened by wrapping with CFRP and GFRP are presented and discussed. It has been concluded that although the flexural and shear strengths of the RC beams strengthened with GFRP composites are lower than those of beams reinforced with CFRP, their ductility and energy absorption capacities are very high. Moreover, the RC beams strengthened with CFRP fracture are more brittle when compared to GFRP.

Damage characterization of beam-column joints reinforced with GFRP under reversed cyclic loading

  • Said, A.M.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.443-455
    • /
    • 2009
  • The use of fiber reinforced polymer (FRP) reinforcement in concrete structures has been on the rise due to its advantages over conventional steel reinforcement such as corrosion. Reinforcing steel corrosion has been the primary cause of deterioration of reinforced concrete (RC) structures, resulting in tremendous annual repair costs. One application of FRP reinforcement to be further explored is its use in RC frames. Nonetheless, due to FRP's inherently elastic behavior, FRP-reinforced (FRP-RC) members exhibit low ductility and energy dissipation as well as different damage mechanisms. Furthermore, current design standards for FRP-RC structures do not address seismic design in which the beam-column joint is a key issue. During an earthquake, the safety of beam-column joints is essential to the whole structure integrity. Thus, research is needed to gain better understanding of the behavior of FRP-RC structures and their damage mechanisms under seismic loading. In this study, two full-scale beam-column joint specimens reinforced with steel and GFRP configurations were tested under quasi-static loading. The control steel-reinforced specimen was detailed according to current design code provisions. The GFRP-RC specimen was detailed in a similar scheme. The damage in the two specimens is characterized to compare their performance under simulated seismic loading.

A Study on The effect of Set aside Arbitral award made abroad (중재지인 외국에서 취소된 중재판정의 효력에 관한 고찰)

  • 김명엽
    • Journal of Arbitration Studies
    • /
    • v.13 no.2
    • /
    • pp.103-122
    • /
    • 2004
  • Recognition and enforcement of the arbitral award play an important role in the settlement of the international commercial disputes. The New York Convention makes it a duty for the courts of signatories to recognize and enforce the foreign arbitral awards not taking the nationality of the party concerned into consideration. Recognition and enforcement of the arbitral award may be refused if the award has not yet become binding on the parties, or has been set aside or suspended by a competent authority of the country in which, or under the law of which, that award was made. The arbitral award has the same force as an irrevocable judgement including effect of excluding further litigation, its execution and formation. But the effect of set aside arbitral award made abroad in arbitral place was denied by France court for the interest of his people. There is no arbitral act but arbitral procedure is regulated by New Code of Civil Procedure in case of France. An appeal against the decision which grants recognition or enforcement is open if the recognition or execution is contrary to international pubic policy in virtue of Art. 1502. Arbitrator may consider compulsory provisions in arbitral place to assure to recognition and enforcement of the arbitral award.

  • PDF

Shake Table Test on Seismic Performance Evaluation of the Bolted Connection Type Paneling System with Exterior Finish Material (외부마감재가 부착된 볼트접합 방식 패널링 시스템의 내진성능평가를 위한 진동대 실험)

  • Oh, Sang Hoon;Park, Jong Won;Park, Hae Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • In this study, we conducted a shake table test to verify the seismic performance of the paneling system with steel truss composed of bolt connections. The control group was set to the traditional paneling system with steel truss connected by spot welding method. Test results showed that the bolted connection type paneling system has excellent deformation capacity without cracking or brittle fracture of the steel truss connection parts compared to the welding type paneling system. Furthermore, in the bolted connection type, slight damage occurred at the time of occurrence of the same story drift angle as compared with the existing method, it is considered that it has excellent seismic performance. In compliance with the performance-based design recommended for the current code (ASCE 41-13) on non-structural components, it is judged that in the case of the bolted connection type paneling system, it can be applied to all risk category structures without restriction. However, in the case of traditional paneling system with spot welding method, it is considered that it can be applied limitedly.