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1. INTRODUCTION

The high strength- and stiffness -to-weight ratios of

advanced composite materials makes these materials

attractive for certain critical applications (Yener &

Wolcott, 1988). Composites have been increasingly used

as structural materials in the space and aerospace

industry, aircraft industry, automobile industry, and in

various engineering fields.

Composite materials partly behave in a nonlinear

fashion, although composite materials generally have

been modeled as linear elastic material. The

nonlinearity of composite materials can be attributed to

inherent material nonlinearity of individual constituents

and to micromechanical failures such as fiber or matrix

microcracking and interfacial debonding.

That the plasticity theory is capable of

mathematically modeling the inelastic material behavior

at macroscopic level (Yener & Yi, 1989) is well

known. The available plasticity constitutive models for

isotropic materials are difficult to use for composite

materials. Several theoretical anisotropic plasticity

constitutive models have been developed, that are
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generally for metal or are too complex for a numerical

computer code.

Several theoretical anisotropic plasticity constitutive

models were proposed for composite laminates (Petit &

Waddoups, 1969; Hahn & Tsai, 1973; Sandhu, 1974).

Aforementioned constitutive models are often used in

the practical design field for their simplicity and in

spite of their limitations. Their unavoidable

shortcoming for a predictive analysis procedure,

however, is that they cannot predict the material

behavior of permanent strain accumulation by large

deformation. Several anisotropic plasticity theories have

been developed to describe the plastic behavior of

anisotropic materials. Hill's theory (Hill, 1948, 1950)

was the first anisotropic yield criterion which is a

generalization of von Mises' yield criterion for isotropic

material. Recently, Valliappan (1972), as well as

Owen and his colleagues (Owen & Figueiras 1983;

Owen & Li, 1988), used Whang's approach in the

finite element analysis of anisotropic elastic-plastic

materials. However, Whang's yield function is not

valid for highly anisotropic material such as

unidirectional composite materials, and their model does

not account for differential between the tensile and

compressive yield strengths (i.e., Bauschinger effect).

Aforementioned anisotropic plasticity theories can be

considered as generalizations of plasticity theory for

isotropic materials, with more material parameters to

account for symmetries of material. There have been

appeared many general theoretical anisotropic plasticity

theories (Edelman & Drucker 1951; Williams &

Svensson, 1971; Baltov & Sawczuck, 1965; Eisenberg

& Phillips, 1968). Although these theories are very

general theoretically, they are too complex to be used

in a numerical method. Our work (Yener & Yi, 1990

& 1992) indicates that most constitutive models for

composite materials represent slight modifications of the

conventional elasticity and plasticity theories.

As mentioned earlier, general response prediction of

composite structures becomes possible by developing a

realistic and comprehensive analysis procedure for

general loading conditions. Such an undertaking,

among other considerations, requires very efficient

constitutive model which can predict realistically

nonlinear material behavior. Hence, the objective of

current research is to develop an anisotropic plasticity

constitutive model for fiber-reinforced composite

laminates that is simple and efficient to be

implemented into a computer program for a predictive

analysis procedure of composites.

2. Constitutive Modeling of Composite

Materials

2.1 Elastic Constitutive Relationship

The most general stress-strain relationship within the

linear elasticity can be written in tensor notation as

   (1)

where  is the stress vector,  the stress-strain

matrix, and  the strain vector. In the case of

fiber-reinforced composite laminate, which possesses

three mutually orthogonal planes of symmetry at each

layer, the constants in the stress-strain matrix are

reduced to 9 (Tsai & Hahn, 1980). For the

convenience of implementation into finite element

computer program, the contracted notation is used. As

shown in Fig. 1, the planes of symmetry are aligned

with material principal axes (1,2,3) in an lamina. With

the contracted notation, the stress-strain relation for a

lamina becomes

      (2)

Fig. 1 Unidirectional Fiber-reinforced Composite Lamina

If the principal material directions 1,2 do not coincide

with the reference axes x,y, a relation is needed

between the stresses and strains. The relationship can

be represented in symbolic matrix form as

        (3a)

        (3b)
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where the subscripts 1-2 and x-y refer to the material

(local) and global coordinates systems and   and

  are the stress transformation and the strain

transformation matrix, respectively.

2.2 Anisotropic Plasticity Theory

As pointed out, development of an anisotropic

plasticity constitutive model is required for a predictive

analysis of fiber-reinforced composite laminates.

Incremental theory of plasticity is used as the base of

development for an anisotropic plasticity theory, since it

more adequately reflects the progressive behavior of

material. To be a general constitutive model,

work-hardening behavior is assumed. The following

three fundamental elements of plasticity are developed

for the anisotropic plasticity theory for fiber-reinforced

composite laminates:

(a) An initial anisotropic yield surface that

defines the elastic limit of material behavior in the

stress space.

(b) An anisotropic hardening rule that specifies

the evolution of subsequent yield surface under plastic

deformation.

(c) The flow rule, clarifying the direction of the

incremental plastic strain vector in strain space.

On the other hand, anisotropic materials under

multi-axial loading conditions exhibit some important

characteristics, including (1) different yield stresses with

orientation and (2) differences between tensile and

compressive yield stresses. An anisotropic yield

criterion under general loading, which includes effects

of different yield strengths in material principal

directions and between tension and compression

(Bauschinger effect), is proposed for composite

materials, making in especially useful for both

unidirectional and bidirectional composite lamina.

2.3. Anisotropic Yield Criterion

Considering the material characteristics of the

fiber-reinforced composites given in the preceding

section, a general form of the anisotropic yield

criterion for composite material can be the quadratic

function given as

  
    (4)

where  is the current state of stress and where

three material variables  , , and  represent the

current state of plastic deformation. Anisotropic

parameters describe the current state of plastic

anisotropy as represented by different yield stresses

with respect to material directions. The translation

vector describes the current strength differentials

between tensile and compressive yield stresses. The

scalar parameter represents the effective size of yield

surface that corresponds to the reference yield stress of

material at a given point in history.

Composite material considered in this study is

assumed to have three orthogonal symmetric planes

(Fig. 1), and the principal axes of anisotropy are

assumed as reference axes. If we neglect transverse

normal stress and differences between the positive and

negative shear stresses,   and  can be written in

the following matrix form

   











   
   

    

    
    

(5)

        


(6)

If the principal axes of anisotropy do not coincide with

the reference axes but rotate by a certain angle  , the

anisotropic parameter matrix is transformed according to

the stress transformation matrix as



    

    (7)

where   is the stress transformation matrix as

already defined by Eq. 3.

The yield function can also be expressed in explicit

form as

     (8)

The yield functions given by Eqs. 4 and 8 are

equivalent if

    (9)
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and   


(10)

The yield function given by Eq. 8 is attractive because

the strength differentials are described directly by ;

however, a direct evaluation of  (due to strength

differential) in Eq. 4 from uniaxial tests is quite

cumbersome (Shih & Lee, 1978). The yield function

given by Eq. 8 is more convenient for finding   and

 from experimental results, at which point  can

be determined by using Eq. 9. Hence, Eq. 8 is used

in the following developments in terms of   , ,

and  parameters.

For the yield function of Eq. 8, a physical

interpretation can be made by uniaxial tension and

compression tests in each direction, and by pure shear

tests, respectively. We show uniaxial tensile yield

stresses in 1- and 2-directions as  and  on the

yield surface and absolute values of compressive yield

stresses as  and  , respectively. From simple

uniaxial tension and compression test in material 1-and

2-direction, we can obtain the anisotropic material

parameters as

 


      (11)

 


      (12)

In addition, the anisotropic parameters are related to

the shear yield stresses for the pure shear tests, as

  




  





  





(13)

where the axial shear yield stress  is associated

with 1-2 and 1-3 planes, and the transverse shear

yield stress  is associated with 2-3 planes. The

anisotropic material parameters, which describe

plastic anisotropy in material principal directions, are

obtained except off-diagonal term in Eq. 5.

2.4 Evaluation of Interaction Term

In order to determine the remaining off-diagonal

interaction term in the anisotropic parameter matrix

(Eq. 5), either of any biaxial tests like

tension-tension, tension-compression, or zero

volumetric plastic strain assumption (i.e.,the

incompressibility) has been used. However, the

values of the interaction term from the biaxial test

will apparently not be unique (Shih & Lee, 1978).

An infinite number of biaxial tests indicates that it

may not practical to choose the optimum test result.

On the other hand, most composite materials are

brittle; thus the incompressibility condition is

inadequate for use (Chen & Han, 1988).

In the current plane stress formulation, the bound

restriction (stability condition) for an elliptic

equation is used to determine interaction term  .

The yield surface of Eq. 8 is an ellipsoid in a

three-dimensional stress space with  ,  , and one

of the shear stresses. Hence, the yield surface will

be an ellipse in a plane of constant shear stress

(Fig. 2) if the following condition in terms of

anisotropic parameters is satisfied:

 
   (14)

Fig. 2 Assumed Rotation of Yield Surface in a Constant
Shear Stress Plane.

If the stability condition, Eq. 14 is not satisfied, the

surface described by Eq. 8 will not be closed and will,

therefore, be unbounded. To assure a closed yield

surface to ensure that the yield surface becomes valid

physically, the value of  must satisfy the stability

condition Eq. 14. When an elliptic equation satisfies

the stability condition, the rotation angle of the major

axis of ellipse shows the following relation with the

coefficients of elliptic function, which in this case are

anisotropic material parameters of Eq. 8:

tan ′  


(15)

where ′ is the rotation angle between the major
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axis of yield ellipse and the 1-direction of the

principal axes of anisotropy, shown in Fig. 2.

In the current model, the rotation of the major

axis to the strength axis in 1-direction is assumed

as

tan  
 

(16)

where  is the assumed rotation angle, and  ,

 ,  , and  are the tensile and compressive

yield stresses in 1- and 2- directions, respectively.

Eq. 16 is based on an assumption that the rotation

of the major axis of yield ellipse is lined on the

intersection line between tensile and compressive

yield stresses of each direction (Fig. 2). With this

assumption, therefore, the interactive effects between

the normal stresses can be included in the yield

function. As shown in Fig. 2, the rotation angle of

yield ellipse (dashed line) does not exactly coincide

with the assumed solid line, but the differences are

negligible. By substitution of Eq. 16 into Eq. 15,

 can be written as

 





 (17a)

or,

 




 



  (17b)

The new interaction terms given by Eq. 17

automatically satisfy the stability condition, Eq. 14.

The anisotropic material parameters in Eqs. 11, 12,

13, and 17 define the anisotropic initial yield

criterion with the current state of stresses through

Eq. 8; with further loading, however, we must

determine how the material behaves beyond the

initial yield criterion.

2.5 Anisotropic Work-Hardening Rule

As mentioned earlier, several noteworthy

contributions for anisotropic hardening rules have

been made, but most are impractical and too

complex to be implemented into a numerical

computer program for predictive analysis of

fiber-reinforced composites.

An attempt must be made to construct an

anisotropic work-hardening model to explain material

behavior of fiber-reinforced composites beyond initial

yield criterion. The current model allows for a

nonproportional change of yield values so that the

subsequent yield surface can be distorted. The

basic concept of the current model is to determine

the anisotropic material parameters   in the

principal material directions with varying yield

strengths. The total plastic work due to the change

of yield stress in each direction should be the same

as the equivalent change in effective stress

(Schreyer, Kulak & Kramer, 1979).

The assumption, originally developed by Baltov

& Sawczuck (1965), is adopted, showing that the

plastic work produced during plastic loading in any

principal material direction is the same amount

produced by effective stress in the irrespective

direction:

      (18)

where  and  are the effective stress and

effective plastic strain, respectively. Note that one

of the stress-strain diagrams is arbitrarily chosen as

the effective stress-strain diagram. In the principal

material directions, the plastic work  of Eq. 18

can be expressed approximately as

  
 




 


     (19)

where 

and  


are the initial and subsequent

yield strengths, and 

is the plastic modulus (Fig.

3) in the principal material directions, respectively.

By analogy to Eq. 19, the plastic work done by the

effective stress can be expressed as

 ′




 (20)

where H' is the hardening modulus (Fig. 3) of the

effective stress-effective plastic strain diagram, and

 

is the initial effective yield stress. By equating

the plastic works of Eqs. 19 and 20, we obtain
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′




 





 


  (21)

From Eq. 21, the subsequent yield stress becomes

Fig. 3 Plastic work produce (a) in any Principal Material
Direction and (b) by the Effective Stress.

   ′










   ′











 ′







 


(22)


  ′







 




  ′







 



The evolution of the subsequent yield surface can

be expressed with the individual subsequent yield

strengths in Eq. 22.

The plastic modulus  

can be determined in

terms of the elastic modulus   and the tangent

modulus  

. The strain increment  is assumed

to consist of two parts: the elastic strain increment,

 , and the plastic strain increment,  (Fig.

4(a)).

  
 


(23)

Fig. 4 (a) Tangent Modulus and (b) Plastic Modulus.

The stress increment  is related to the strain

increment  by

  
 (24)

where 

is the tangent modulus that changes

during the plastic modulus (Fig. 4(a)). The plastic

strain increment  and the stress increment 

are related by

  



(25)

where  

is referred to the plastic modulus (Fig.

4(b)). The elastic strain increment shows the usual

relation with the stress increment as

  


(26)

where  is the elastic modulus. The relationship

between moduli 

, 


, and  :


 



 
 



  


(27)

By substituting the subsequent yield strengths

into the initial anisotropic parameters, the anisotropic

parameters for the subsequent yield criterion at any

state of plastic deformation can be obtained as

  
 








′
 
















(28)

We should note that the repeated indices in Eq. 28

do not imply summation here, and that  in

anisotropic parameters becomes

 because of 
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= 0 (neglecting the Bauschinger effect). With these

varying anisotropic parameters, the subsequent yield

surface is defined so the shape of surface may be

distorted depending on the amount of plastic

deformation of each material direction.

2.6 Elastic-Plastic Constitutive Relationship

The incremental constitutive relationship for an

elastic-plastic material is formulated by using the

consistency condition. The derivation of the

incremental elastic-plastic stress-strain relationship is

well documented in many textbooks, so it is only

noted that the derivation of the current model

employed the associated flow rule and the strain-

hardening hypothesis of the effective plastic strain.

Simply here, the incremental elastic-plastic

constitutive relationship is presented as

  
 (29)

where  and  are the incremental stress and

strain vectors, respectively, 


is the elastic-plastic

material stiffness tensor defined as


 

 


























(30)

where the flow vector  can be written in

the explicit form as





































































(31)

where  is the subsequent yield function, and  

is the anisotropic material parameters in the

subsequent yield function. To be consistent with

the strain-hardening hypothesis, the hardening

modulus 

 in Eq. 30 is given as

′






 
 

(32)

where  and   are the elastic and tangent

moduli of the material from uniaxial test,

respectively, and the tangent modulus is changed

along with the plastic deformation. Eq. 32 is

evaluated from a generalized effective stress-effective

strain curve derived from the stress-strain curves

obtained along the respective principal directions.

3. NUMERICAL ILLUSTRATIVE EXAMPLES

Anisotropic plasticity constitutive model has

been presented for analysis of fiber-reinforced

composite structures. Also, their models are

successfully implemented into the computer program

PACS (Yener & Yi, 1994). In order to verify the

validity of the problem formulation and the

efficiency of numerical implementation, several

example problems are analyzed by using the

computer program PACS. Numerical results are

compared with various experimental and other

numerical results.

3.1 Elastic-Plastic Analysis of Composite

Laminates

In this section, the anisotropic elastic-plastic

analysis capability of the computer program is

verified with several composite laminates on

different boundary and loading conditions. The

elastic-plastic material behavior is observed and

compared. Also, the behaviors of isotropic and

anisotropic materials are compared.

This section aims to predict nonlinear anisotropic

material behavior of the fiber-reinforced composite

laminates. Petit and Waddops (1969) performed

experiments on a variety of Boron/Epoxy composite

laminates. The material constants are given in

Table 1, and used as input data in the computer

program PACS.
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Table 1. The Material Constants for Boron/Epoxy

(B/Ep)

The shear moduli in 2-3 and 3-1 plane are not

given in experimental data, hence these values are

assumed same as one of 1-2 plane. Hashin

modeled nonlinear behavior of composite material

based on the deformation theory of plasticity

(Hashin, Bagchi & Rosen, 1973). Present analysis

results are included in the same graph with those

experimental and other numerical results.

Fig. 5 Tensile stress-strain curve for [0
0
/90

0
]s cross-ply

Boron/Epoxy laminate

Several laminate schemes are tested. To explain

the notation for the laminate scheme used in this

section, layer angles are distinguished by a slash

and written in order of from the top, with the

whole stacking sequence enclosed within square

brackets. If there is more than one layer at any

angles, the number of layers is denoted by

subscripts within the brackets. The  layer has

fibers along the x-direction in the reference

coordinates system. If the laminate has a symmetric

scheme referred to mid-surface, the symmetric is

denoted by subscript s outside the brackets.

The predicted stress-strain curve by PACS for

  cross-ply B/Ep laminate is compared

with the experimental results in Fig. 5. Although

the program PACS predicts high ultimate strength of

laminate, material behavior shows better agreement

with the experimental results than with Hashin's

model. Note that curves are located the end of

section.

Fig. 6 examines a   angle-ply laminate,

showing quite different outcomes between test and

numerical results. As mentioned previously, the

shear muduli in 1-3 and 2-3 planes are assumed the

same as the 1-2 plane because these were not

obtained in experiments by Waddoup and Petit

(1969). As a highly nonlinear nature of response is

depicted in Fig. 6, a significant amount of shear

strains appears in the   angle-ply

laminate. The ultimate strength of the present

analysis is predicted quite close to that of the

experiment.

Fig. 6 Tensile stress-strain curve for [45
0
/-45

0
]s angle-ply

B/Ep laminate.

Stress-strain curves for the   angle-ply

laminate is shown in Fig. 7, showing that predicted

material behaviors are in good agreement with

experimental and other numerical results. The

predicted ultimate strength is quite close to that of

the experiment. Another angle-ply laminate

  , presented in Fig. 8, compares to the

curves of experiment and numerical results. Close

shapes of the curves are shown, but the

experimental result shows more nonlinear behavior.

Elastic

constants (ksi)

Plastic

constants (ksi)

Failure

constants (ksi)

 
 
 
 

 
 
 
 
 
 

 
 
 
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Fig. 7 Tensile stress-strain curve for [30
0
/-30

0
]s angle-ply

B/Ep laminate.

Noting observations about the three angle-ply

laminates,   ,   , and

  is interesting. Ultimate strengths of

laminates become lower when fiber angles are wider

from the loading direction. The  
angle-ply laminate shows more nonlinear behavior

than the other two angle-ply laminates because of a

more significant amount of shear strain than found

in the other two angle-ply laminates. Although the

  and   angle-ply laminates

show similar trends of material behavior, the

  shows more scatter and nonlinear

material behavior than the   angle-ply

laminate due to more shear forces.

Fig. 8 Tensile stress-strain curve for [60
0
/-60

0
]s angle-ply

B/Ep laminate.

6. CONCLUSIONS

The development and use of an analytical

procedure which has capability of predicting the

progressive material behavior of structures, named as

a predictive analysis procedure in here, is developed

for more accurate assessment of structural safety and

efficiency of composite structures.

A quadratic anisotropic yield criterion in stress

space is developed for general use with

unidirectional and bidirectional composite lamina.

The developed anisotropic work-hardening model

allows for a nonproportional change of the yield

values so that the subsequent yield surface can be a

distorted shape.

The accuracy and efficiency of the proposed

anisotropic plastic constitutive model are verified

with various benchmark problems. Numerical

predictions of the computer program PACS compare

very well with available experimental, analytical and

other numerical results. Comparisons illustrate the

capability of the constitutive model. The developed

constitutive model predicts progressive nonlinear

behavior from the beginning of loading, in plane

and through thickness direction of composite

laminates.
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