• Title/Summary/Keyword: Civil College

Search Result 2,880, Processing Time 0.025 seconds

Nonlinear aerodynamic stability analysis of orthotropic membrane structures with large amplitude

  • Zheng, Zhoulian;Xu, Yunping;Liu, Changjiang;He, Xiaoting;Song, Weiju
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.401-413
    • /
    • 2011
  • The aerodynamic stability of orthotropic tensioned membrane structures with rectangular plane is theoretically studied under the uniform ideal potential flow. The aerodynamic force acting on the membrane surface is determined by the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics. Then, based on the large amplitude theory and the D'Alembert's principle, the interaction governing equation of wind-structure is established. Under the circumstances of single mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction equation into a system of second order nonlinear differential equation with constant coefficients. Through judging the stability of the system characteristic equation, the critical divergence instability wind velocity is determined. Finally, from different parametric analysis, we can conclude that it has positive significance to consider the characteristics of orthotropic and large amplitude for preventing the instability destruction of structures.

Prediction of chloride binding isotherms for blended cements

  • Ye, Hailong;Jin, Xianyu;Chen, Wei;Fu, Chuanqing;Jin, Nanguo
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.655-672
    • /
    • 2016
  • A predictive model for chloride binding isotherms of blended cements with various supplementary cementitious materials (SCMs) was established in this work. Totally 560 data points regarding the chloride binding isotherms of 106 various cements were collected from literature. The total amount of bound chloride for each mixture was expressed a combinational function of the predicted phase assemblage and binding isotherms of various hydrated phases. New quantitative expressions regarding the chloride binding isotherms of calcium-silicate-hydrate (C-S-H), AFm, and hydrotalcite phases were provided. New insights about the roles of SCMs on binding capabilities of ordinary portland cements (OPC) were discussed. The proposed model was verified using separate data from different sources and was shown to be reasonably accurate.

Effect of electrochemical treatment on consolidation of soft clay

  • Li, Xiaobing;Yuan, Guohui;Fu, Hongtao;Wang, Jun;Cai, Yuanqiang
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.957-964
    • /
    • 2018
  • In this study, a method of electrochemical consolidation is applied. This method utilizes electro-osmosis, which is an effective ground improvement technique for soft clays, and soil treatment using lime, which is the oldest traditional soil stabilizer. The mechanism of lime treatment for soil involves cation exchange, which leads to the flocculation and agglomeration. Five representative laboratory tests-an electro-osmotic test and four electrochemical tests with various proportions of lime-were performed on dredged marine clay. The objectives of this study are to investigate the effect of electrochemical treatment and to determine the optimum dose for optimal consolidation performance of dredged marine clay. The results show that a better consolidation effect was achieved in terms of current, temperature, and vane shear strength by using electrochemical treatment. The best results were observed for the electrochemical test using 4% lime content.

Power series solution of circular membrane under uniformly distributed loads: investigation into Hencky transformation

  • Sun, Jun-Yi;Rong, Yang;He, Xiao-Ting;Gao, Xiao-Wei;Zheng, Zhou-Lian
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.631-641
    • /
    • 2013
  • In this paper, the problem of axisymmetric deformation of the circular membrane fixed at its perimeter under the action of uniformly-distributed loads was resolved by exactly using power series method, and the solution of the problem was presented. An investigation into the so-called Hencky transformation was carried out, based on the solution presented here. The results obtained here indicate that the well-known Hencky solution is, without doubt, correct, but in the published papers the statement about its derivation is incorrect, and the so-called Hencky transformation is invalid and hence may not be extended to use as a general mathematical method.

A kind of NiTi-wire shape memory alloy damper to simultaneously damp tension, compression and torsion

  • Han, Yu-Lin;Yin, Hai-Yang;Xiao, Er-Tian;Sun, Zhi-Lin;Li, Ai-Qun
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.241-262
    • /
    • 2006
  • NiTi-wire shape memory alloy (SMA) dampers, that utilize NiTi SMA wires to simultaneously damp tension, compression and torsion, was developed for structural control implementation in this study. First, eight reduced-scale NiTi-wire SMA dampers were constructed. Then tension, compression and torsion experiments using the eight reduced-scale NiTi-wire SMA dampers of different specification were done. The experimental results revealed all of the eight reduced-scale NiTi-wire SMA dampers had the ability to simultaneously supply tension-compression damping and torsion damping. Finally, mechanics analysis of the NiTi-wire SMA dampers was done based on a model of the SMA-wire restoring force and on tension-compression and torsion damping analysis. The damping analytical results were found to be similar to the damping experimental results.

Wind engineering for high-rise buildings: A review

  • Zhu, Haitao;Yang, Bin;Zhang, Qilin;Pan, Licheng;Sun, Siyuan
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.249-265
    • /
    • 2021
  • As high-rise buildings become more and more slender and flexible, the wind effect has become a major concern to modern buildings. At present, wind engineering for high-rise buildings mainly focuses on the following four issues: wind excitation and response, aerodynamic damping, aerodynamic modifications and proximity effect. Taking these four issues of concern in high-rise buildings as the mainline, this paper summarizes the development history and current research progress of wind engineering for high-rise buildings. Some critical previous work and remarks are listed at the end of each chapter. From the future perspective, the CFD is still the most promising technique for structural wind engineering. The wind load inversion and the introduction of machine learning are two research directions worth exploring.

Static and fatigue behavior of through-bolt shear connectors with prefabricated HFRC slabs

  • He, Yuliang;Zhuang, Jie;Hu, Lipu;Li, Fuyou;Yang, Ying;Xiang, Yi-qiang
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.109-121
    • /
    • 2022
  • Twelve push-out test specimens were conducted with various parameters to study the static and fatigue performance of a new through-bolt shear connector transferring the shear forces of interface between prefabricated hybrid fiber reinforced concrete (HFRC) slabs and steel girders. It was found that the fibers could improve the fatigue life, capacity and initial stiffness of through-bolt shear connector. While the bolt-hole clearance reduced, the initial stiffness, capacity and slippage of through-bolt shear connector increased. After the steel-concrete interface properties were improved, the initial stiffness increased, and the capacity and slippage reduced. Base on the test results, the equation of the load-slip curve and capacity of through-bolt shear connector with prefabricated HFRC slab were obtained by the regression of test results, and the allowable range of shear force under fatigue load was recommended, which could provide the reference in the design of through-bolt shear connector with prefabricated HFRC slabs.

Mechanical behavior of stud shear connectors embedded in HFRC

  • He, Yu-Liang;Wu, Xu-Dong;Xiang, Yi-Qiang;Wang, Yu-Hang;Liu, Li-Si;He, Zhi-Hai
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • Hybrid-fiber reinforced concrete (HFRC) may provide much higher tensile and flexural strengths, tensile ductility, and flexural toughness than normal concrete (NC). HFRC slab has outstanding advantages for use as a composite bridge potential deck slab owing to higher tensile strength, ductility and crack resistance. However, there is little information on shear connector associated with HFRC slabs. To investigate the mechanical behavior of the stud shear connectors embedded in HFRC slab, 14 push-out tests (five batches) in HFRC and NC were conducted. It was found that the stud shear connector embedded in HFRC had a better ductility, higher stiffness and a slightly larger shear bearing capacity than those in NC. The experimentally obtained ultimate resistances of the stud shear connectors were also compared against the equations provided by GB50017 2003, ACI 318-112011, AISC 2011, AASHTO LRFD 2010, PCI 2004, and EN 1994-1-1 (2004), and an empirical equation to predict the ultimate shear connector resistance considering the effect of the HFRC slabs was proposed and validated by the experimental data. Curve fitting was performed to find fitting parameters for all tested specimens and idealized load-slip models were obtained for the specimens with HFRC slabs.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.