Browse > Article
http://dx.doi.org/10.12989/was.2021.32.3.249

Wind engineering for high-rise buildings: A review  

Zhu, Haitao (College of Civil Engineering, Tongji University)
Yang, Bin (College of Civil Engineering, Tongji University)
Zhang, Qilin (College of Civil Engineering, Tongji University)
Pan, Licheng (College of Civil Engineering, Tongji University)
Sun, Siyuan (College of Civil Engineering, Tongji University)
Publication Information
Wind and Structures / v.32, no.3, 2021 , pp. 249-265 More about this Journal
Abstract
As high-rise buildings become more and more slender and flexible, the wind effect has become a major concern to modern buildings. At present, wind engineering for high-rise buildings mainly focuses on the following four issues: wind excitation and response, aerodynamic damping, aerodynamic modifications and proximity effect. Taking these four issues of concern in high-rise buildings as the mainline, this paper summarizes the development history and current research progress of wind engineering for high-rise buildings. Some critical previous work and remarks are listed at the end of each chapter. From the future perspective, the CFD is still the most promising technique for structural wind engineering. The wind load inversion and the introduction of machine learning are two research directions worth exploring.
Keywords
high-rise buildings; wind tunnel; field measurement; CWE; CFD; vortex; aerodynamic damping; aerodynamic modifications; proximity effect;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Counihan, J. (1975), "Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880-1972", Atmos Environ., 9(10), 871-905. https://doi.org/10.1016/0004-6981(75)90088-8.   DOI
2 Dagnew, A. and Bitsuamlak, G. (2013), "Computational evaluation of wind loads on buildings: a review", Wind Struct., 16(6), 629-660. http://dx.doi.org/10.12989/was.2013.16.6.629.   DOI
3 Dagnew, A.K. and Bitsuamlak, G.T. (2014), "Computational evaluation of wind loads on a standard tall building using les", Wind Struct., 18(5), 567-598. https://doi.org/10.12989/was.2014.18.5.567.   DOI
4 Dalgliesh, W.A. (1975), "Comparison of model/full-scale wind pressures on a high-rise building", J. Wind Eng. Ind. Aerod., 1 55-66. https://doi.org/10.1016/0167-6105(75)90006-9.   DOI
5 Dalgliesh, W.A., Wright, W. and Schriever, W.R. (1967), Wind pressure measurements on a full-scale high-rise office building. Division of Building Research, National Research Council.
6 Davenport, A.G. (1961), "Rationale for determining design wind velocities", Transactions Amer. Soc. Civil Eng., 126(2), 184-213. https://doi.org/10.1061/TACEAT.0008189.   DOI
7 Davenport, A.G. (1961), "The application of statistical concepts to the wind loading of structures.", Proceedings of the Institution of Civil Engineers., 19(4), 449-472. https://doi.org/10.1680/iicep.1961.11304.   DOI
8 Davenport, A.G. (1962), "The spectrum of horizontal gustiness near the ground in high winds", Quarter. J. Roy Meteor. Soc., 87(372), 194-211. https://doi.org/10.1002/qj.49708737208.   DOI
9 Hayashida, H. and Iwasa, Y. (1990), "Aerodynamic shape effects of tall building for vortex induced vibration", J. Wind Eng. Ind. Aerod., 33(1), 237-242. https://doi.org/10.1016/0167-6105(90)90039-F.   DOI
10 Huang, P., Quan, Y. and Gu, M. (2013), "Experimental study of aerodynamic damping of typical tall buildings", Math Prob. Eng., 2013 1-9. https://doi.org/10.1155/2013/731572.   DOI
11 Zhengwei, Z., Yong, Q. and Ming, G. (2013), "Effects of corner recession modification on aerodynamic coefficients of square high-rise buildings", China Civil Eng. J., 46(7), 58-65.
12 Zhi, L., Fang, M. and Li, Q.S. (2017a), "Estimation of wind loads on a tall building by an inverse method: estimation of wind loads by an inverse method", Struct. Control Health Monit., 24(4), e1908. https://doi.org/10.1002/stc.1908.   DOI
13 Zhi, L., Li, Q., Fang, M. and Yi, J. (2017b), "Identification of wind loads on supertall buildings using kalman filtering-based inverse method", J Struct Eng., 143(4). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001691.   DOI
14 Zhi, L., Li, Q.S. and Fang, M. (2016), "Identification of wind loads and estimation of structural responses of super-tall buildings by an inverse method", Comput. Aid. Civil Infrastruct. Eng., 31(12), 966-982. https://doi.org/10.1111/mice.12241.   DOI
15 Zhou, Y., Kijewski, T. and Kareem, A. (2003), "Aerodynamic loads on tall buildings: interactive database", J. Struct. Eng., 129(3), 394-404. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(394)   DOI
16 Hu, G., Liu, L., Tao, D., Song, J. and Kwok, K.C.S. (2019), "Investigation of wind pressures on tall building under interference effects using machine learning techniques".
17 Hu, G., Liu, L., Tao, D., Song, J., Tse, K.T. and Kwok, K.C.S. (2020), "Deep learning-based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Ind. Aerod., 201 104138. https://doi.org/10.1016/j.jweia.2020.104138.   DOI
18 Summers, D.M., Hanson, T. and Wilson, C.B. (1986), "Validation of a computer simulation of wind flow over a building model", Build Environ., 21(2), 97-111. https://doi.org/10.1016/0360-1323(86)90016-8.   DOI
19 Stickland, M. (2013), "Northern seas wind index database", Norsewind.
20 Su, J., Xia, Y. and Weng, S. (2020), "Review on field monitoring of high-rise structures", Struct. Control Health Monit., 27(12), e2629. https://doi.org/10.1002/stc.2629.   DOI
21 Swaddiwudhipong, S. and Khan, M. (2002), "Dynamic response of wind-excited building using cfd", J. Sound Vib., 253(4), 735-754. https://doi.org/10.1006/jsvi.2000.3508.   DOI
22 Tamura, G.T. and Wilson, A.G. (1968), Pressure Differences Caused by Wind on Two Tall Buildings, Division of Building Research, National Research Council.
23 Thepmongkorn, S., Wood, G.S. and Kwok, K.C.S. (2002), "Interference effects on wind-induced coupled motion of a tall building", J. Wind Eng. Ind. Aerod., 90(12), 1807-1815. https://doi.org/10.1016/S0167-6105(02)00289-1.   DOI
24 Triantafyllou, M.S., Bourguet, R., Dahl, J. and Modarres-Sadeghi, Y. (2016), "Vortex-induced vibrations".
25 Tschanz, T. (1982), "The base balance measurement technique and applications to dynamic wind loading to structures".
26 Tse, K.T., Hitchcock, P.A., Kwok, K.C.S., Thepmongkorn, S. and Chan, C.M. (2009), "Economic perspectives of aerodynamic treatments of square tall buildings", J. Wind Eng. Ind. Aerod., 97(9-10), 455-467. https://doi.org/10.1016/j.jweia.2009.07.005.   DOI
27 Letchford, C.W. and Isaacs, L.T. (1992), "Full scale measurement of wind speeds in an inner city", J. Wind Eng. Ind. Aerod., 44(1), 2331-2341. https://doi.org/10.1016/0167-6105(92)90024-5.   DOI
28 Huang, P. and Gu, M. (2002), "Study on wind-induced mean interference effects between two tall buildings", J. Build. Struct., 5.
29 Kim, Y.C., Bandi, E.K., Yoshida, A. and Tamura, Y. (2015), "Response characteristics of super-tall buildings - effects of number of sides and helical angle", J. Wind Eng. Ind. Aerod., 145 252-262. https://doi.org/10.1016/j.jweia.2015.07.001.   DOI
30 Kwok, K.C. (2013), "Wind-induced vibrations of structures: with special reference to tall building aerodynamics", Advan. Struct. Wind Eng., https://doi.org/10.1007/978-4-431-54337-4_5.   DOI
31 Li, Q. and Yi, J. (2016), "Monitoring of dynamic behaviour of super-tall buildings during typhoons", Struct. Infrastruct. Eng., 12(3), 289-311. https://doi.org/10.1080/15732479.2015.1010223.   DOI
32 Li, Q., He, Y., He, Y., Zhou, K. and Han, X. (2019), "Monitoring wind effects of a landfall typhoon on a 600 m high skyscraper", Struct. Infrastruct. Eng., 15(1), 54-71. https://doi.org/10.1080/15732479.2018.1505923.   DOI
33 Murakami, S., Mochida, A. and Hibi, K. (1987), "Three-dimensional numerical simulation of air flow around a cubic model by means of large eddy simulation", J. Wind Eng. Ind. Aerod., 25(3), 291-305. https://doi.org/10.1016/0167-6105(87)90023-7.   DOI
34 VasilicMelling and Dubravka (1977), "Three-dimensional turbulent flow past rectangular bluff bodies", Imperial College London.
35 Ueda, H., Hibi, K., Tamura, Y. and Fujii, K. (1994), "Multichannel simultaneous fluctuating pressure measurement system and its applications", J Wind Eng Ind Aerod., 51(1), 93-104. https://doi.org/10.1016/0167-6105(94)90079-5.   DOI
36 Uematsu, Y., Yamada, M., Higashiyama, H. and Orimo, T. (1992), "Effects of the corner shape of high-rise buildings on the pedestrian-level wind environment with consideration for mean and fluctuating wind speeds", J. Wind Eng. Ind. Aerod., 44(1), 2289-2300. https://doi.org/10.1016/0167-6105(92)90019-7.   DOI
37 Van Overschee, P. and De Moor, B. (1993), "Subspace algorithms for the stochastic identification problem", Automatica., 29(3), 649-660. https://doi.org/10.1016/0005-1098(93)90061-W.   DOI
38 Vickery, B.J. and Steckley, A. (1993), "Aerodynamic damping and vortex excitation on an oscillating prism in turbulent shear flow", J Wind Eng Ind Aerod., 49(1-3), 121-140. https://doi.org/10.1016/0167-6105(93)90009-D.   DOI
39 Simiu, E. and Scanlan, R.H. (1996), "Wind effects on structures: fundamentals and applications to design".
40 Zhang, J. and Li, Q. (2019), "Identification of modal parameters of a 600-m-high skyscraper from field vibration tests", Earthq.. Eng. Struct. D., 48(15), 1678-1698. https://doi.org/10.1002/eqe.3219.   DOI
41 Zhang, J.W. and Li, Q.S. (2017), "Wind tunnel test and field measurement study of wind effects on a 600-m-high super-tall building", Struct. Des. Tall Spec. Build., 26(17), e1385. https://doi.org/10.1002/tal.1385.   DOI
42 Holmes, J.D. (1975), "Pressure fluctuations on a large building and along-wind structural loading", J Wind Eng Ind Aerod., 1 249-278. https://doi.org/10.1016/0167-6105(75)90020-3.   DOI
43 He, Y. and Li, Q. (2013), "Dynamic responses of a 492-m-high tall building with active tuned mass damping system during a typhoon", Struct. Control Health Monit., 21(5), 705-720. https://doi.org/10.1002/stc.1596.   DOI
44 He, Y., Li, Q., Zhu, H., Han, X., He, Y. and Li, X. (2018), "Monitoring of structural modal parameters and dynamic responses of a 600m-high skyscraper during a typhoon", Struct. Des. Tall Spec. Build., 27(6), e1456. https://doi.org/10.1002/tal.1456.   DOI
45 Holmes, J. (1987), "Mode shape corrections for dynamic response to wind", Eng. Struct., 9(3), 210-212. https://doi.org/10.1016/0141-0296(87)90017-4.   DOI
46 Hu, G., Hassanli, S., Kwok, K.C.S. and Tse, K.T. (2017), "Wind-induced responses of a tall building with a double-skin facade system", J. Wind Eng. Ind. Aerod., 168 91-100. https://doi.org/10.1016/j.jweia.2017.05.008.   DOI
47 CEGB (1973), Report of the committee of inquiry into collapse of cooling towers at ferrybridge, monday, 1 november 1965, Central Electricity Generating Board
48 Chen, X., Kwon, D. and Kareem, A. (2014), "High-frequency force balance technique for tall buildings: a critical review and some new insights", Wind Struct., 18(4), 391-422. http://dx.doi.org/10.12989/was.2014.18.4.391.   DOI
49 Cheng, C.M., Lu, P.C. and Tsai, M.S. (2002), "Acrosswind aerodynamic damping of isolated square-shaped buildings", J. Wind Eng. Ind. Aerod., 90(12), 1743-1756. https://doi.org/10.1016/S0167-6105(02)00284-2.   DOI
50 Murakami, S., Uehara, K. and Komine, H. (1979), "Amplification of wind speed at ground level due to construction of high-rise building in urban area", J. Wind Eng. Ind. Aerod., 4(3), 343-370. https://doi.org/10.1016/0167-6105(79)90012-6.   DOI
51 Ohkuma, T., Marukawa, H., Niihori, Y. and Kato, N. (1991), "Full-scale measurement of wind pressures and response accelerations of a high-rise building", J. Wind Eng. Ind. Aerod., 38(2), 185-196. https://doi.org/10.1016/0167-6105(91)90040-4.   DOI
52 Wang, C., Li, Z., Hu, L., Zhao, Z., Luo, Q., Hu, J. and Zhang, X. (2019), "Field research on the wind-induced response of a super high-rise building under typhoon", Appl. Sci., 9(11), 2180. https://doi.org/10.3390/app9112180.   DOI
53 Zhang, W.J., Xu, Y.L. and Kwok, K.C.S. (1995), "Interference effects on aeroelastic torsional response of structurally asymmetric tall buildings", J. Wind Eng. Ind. Aerod., 57(1), 41-61. https://doi.org/10.1016/0167-6105(94)00098-X.   DOI
54 Jeary, A.P. (1986), "Damping in tall buildings-a mechanism and a predictor", Earthq. Eng. Struct. Dyn., 14(5), 733-750. https://doi.org/10.1002/eqe.4290140505.   DOI
55 Tamura, Y., Kareem, A., Solari, G., Kwok, K., Holmes, J. and Melbourne, W. (2005), "Aspects of the dynamic wind-induced response of structures and codification", Wind Struct., 8(4), 251-268. http://dx.doi.org/10.12989/was.2005.8.4.251.   DOI
56 Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Chul Kim, Y. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.   DOI
57 Tang, U.F. and Kwok, K.C.S. (2004), "Interference excitation mechanisms on a 3dof aeroelastic caarc building model", J. Wind Eng. Ind. Aerod., 92(14), 1299-1314. https://doi.org/10.1016/j.jweia.2004.08.004.   DOI
58 Taniike and Yoshihito (1991), "Turbulence effect on mutual interference of tall buildings", J. Eng. Mech., 117(3), 443-456. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:3(443).   DOI
59 Taniike and Yoshihito (1992), "Interference mechanism for enhanced wind forces on neighboring tall buildings", J. Wind Eng. Ind. Aerod., 42(1-3), 1073-1083. https://doi.org/10.1016/0167-6105(92)90114-P.   DOI
60 Kwok, K.C.S. and Melbourne, W.H. (1980), "Cross-wind response of structures due to displacement dependent lock-in excitation", Wind Eng., 2, 699-7088. https://doi.org/10.1016/B978-1-4832-8367-8.50068-1.   DOI
61 Murakami, S. and Mochida, A. (1989), "Three-dimensional numerical simulation of turbulent flow around buildings using the k-ε turbulence model", Build. Environ., 24(1), 51-64. https://doi.org/10.1016/0360-1323(89)90016-4.   DOI
62 Murakami, S., Mochida, A. and Hayashi, Y. (1990), "Examining the κ-ϵ model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube", J. Wind Eng. Ind. Aerod., 35 87-100. https://doi.org/10.1016/0167-6105(90)90211-T.   DOI
63 Li, Z., Fu, J., He, Y., Liu, Z., Wu, J., Rao, R. and Ng, C. (2020b), "Structural responses of a supertall building subjected to a severe typhoon at landfall", Appl. Sci. Basel., 10(8). https://doi.org/10.3390/app10082965.   DOI
64 Lin, N., Letchford, C., Tamura, Y., Liang, B. and Nakamura, O. (2005), "Characteristics of wind forces acting on tall buildings", J. Wind Eng. Ind. Aerod., 93(3), 217-242. https://doi.org/10.1016/j.jweia.2004.12.001.   DOI
65 Dryden, H.L. (1932), "Turbulence in wind tunnels", Aircr Eng Aerosp Tec.
66 Wei, Y., Peng, H. and Ming, G. (2004), "Experimental and numerical study on wind-induced mean interference effects on two tall buildings", J. Tongji Univ., 32(2), 152-156.   DOI
67 Wiren, B. (1977), "A wind tunnel study of wind velocities in passages between and through buildings".
68 Zhao, R., Xu, A., Sun, W. and Lan, X. (2017), "Model shape correction method for high-frequency force balance technique", J. Vibroeng., 19(3), 1665-1679.   DOI
69 Jensen, M. (1958), "The model-law for phenomena in natural wind", Ingenioren., 2(2), 121-128.
70 Dryden, H. and Kuethe, A. (1930), Effect of turbulence in wind tunnel measurements, US Government Printing Office
71 Dye, R.C.F. (1980), "Comparison of full-scale and wind-tunnel model measurements of ground winds around a tower building", J Wind Eng Ind Aerod., 6(3), 311-326. https://doi.org/10.1016/0167-6105(80)90008-2.   DOI
72 Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct., 136(1) 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.   DOI
73 Faravelli, L., Ubertini, F. and Fuggini, C. (2011), "System identification of a super high-rise building via a stochastic subspace approach", Smart Struct. Syst., 7(2), 133-152. http://dx.doi.org/10.12989/sss.2011.7.2.133.   DOI
74 Gu, M. (2010), "Wind-resistant studies on tall buildings and structures", Sci. China Technol. Sci., 53(10), 2630-2646. https://doi.org/10.1007/s11431-010-4016-2.   DOI
75 Xu, X., Yang, Q., Yoshida, A. and Tamura, Y. (2017), "Characteristics of pedestrian-level wind around super-tall buildings with various configurations", J. Wind Eng. Ind. Aerod., 166, 61-73. https://doi.org/10.1016/j.jweia.2017.03.013.   DOI
76 Liu, Y., Loh, C. and Ni, Y. (2013), "Stochastic subspace identification for output-only modal analysis: application to super high-rise tower under abnormal loading condition", Earthq. Eng. Struct. Dyn., 42(4), 477-498. https://doi.org/10.1002/eqe.2223.   DOI
77 Marukawa, H., Kato, N., Fujii, K. and Tamura, Y. (1996), "Experimental evaluation of aerodynamic damping of tall buildings", J. Wind Eng. Ind. Aerod., 59(2-3), 177-190. https://doi.org/10.1016/0167-6105(96)00006-2.   DOI
78 Melbourne, W. and Sharp, D. (1976), Effects of Upwind Buildings on the Response of Tall Buildings, In Proc. Reg. Conf. on Tall Buildings, Hong Kong.
79 Xie, J. (2014), "Aerodynamic optimization of super-tall buildings and its effectiveness assessment", J. Wind Eng. Ind. Aerod., 130 88-98. https://doi.org/10.1016/j.jweia.2014.04.004.   DOI
80 Xie, Z.N. and Gu, M. (2010), "Across-wind dynamic response of high-rise building under wind action with interference effects from one and two tall buildings", Struct. Des. Tall Spec. Build., 18(1), 37-57. https://doi.org/10.1002/tal.393.   DOI
81 Xu, Y.L. and Kwok, K. (1993), "Mode shape corrections for wind tunnel tests of tall buildings", Eng Struct., 15(5), 387-392. https://doi.org/10.1016/0141-0296(93)90042-3.   DOI
82 Yamada, M., Uematsu, Y. and Sasaki, R. (1996), "A visual technique for the evaluation of the pedestrian-level wind environment around buildings by using infrared thermography", J. Wind Eng. Ind. Aerod., 65(1-3), 261-271. https://doi.org/10.1016/S0167-6105(97)00045-7.   DOI
83 Yu, X., Xie, Z. and Gu, M. (2018), "Interference effects between two tall buildings with different section sizes on wind-induced acceleration", J. Wind Eng. Ind. Aerod., 182 16-26. https://doi.org/10.1016/j.jweia.2018.09.012.   DOI
84 Miyashita, K., Katagiri, J., Nakamura, O., Ohkuma, T., Tamura, Y., Itoh, M. and Mimachi, T. (1993), "Wind-induced response of high-rise buildings effects of corner cuts or openings in square buildings", J. Wind Eng. Ind. Aerod., 50 319-328. https://doi.org/10.1016/0167-6105(93)90087-5.   DOI
85 Gu, M. and Qin, X.R. (2004), "Direct identification of flutter derivatives and aerodynamic admittances of bridge decks", Eng Struct., 26(14), 2161-2172. https://doi.org/10.1016/j.engstruct.2004.07.015.   DOI
86 Gu, M. and Quan, Y. (2004), "Across-wind loads of typical tall buildings", J. Wind Eng. Ind. Aerod., 92(13), 1147-1165. https://doi.org/10.1016/j.jweia.2004.06.004.   DOI
87 Gu, M. and Quan, Y. (2011), "Across-wind loads and effects of super-tall buildings and structures", Sci. China. Technol. Sci., 54(10), 2531-2541. https://doi.org/10.1016/j.jweia.2004.06.004.   DOI
88 Bandi, E.K., Tamura, Y., Yoshida, A., Chul Kim, Y. and Yang, Q. (2013), "Experimental investigation on aerodynamic characteristics of various triangular-section high-rise buildings", J. Wind Eng. Ind. Aerod., 122 60-68. https://doi.org/10.1016/j.jweia.2013.07.002.   DOI
89 Bashor, R., Bobby, S., Kijewski-Correa, T. and Kareem, A. (2012), "Full-scale performance evaluation of tall buildings under wind", J. Wind Eng. Ind. Aerod., 104-106(3), 88-97. https://doi.org/10.1016/j.jweia.2012.04.007.   DOI
90 Kim, Y. and Kanda, J. (2010), "Characteristics of aerodynamic forces and pressures on square plan buildings with height variations", J. Wind Eng. Ind. Aerod., 98(8-9), 449-465. https://doi.org/10.1016/j.jweia.2010.02.004.   DOI
91 Muller, F. and Nieser, H. (1975), "Measurements of wind-induced vibrations on a concrete chimney", J. Wind Eng. Ind. Aerod., 1 239-248. https://doi.org/10.1016/0167-6105(75)90019-7.   DOI
92 Murakami, S. and Mochida, A. (1988), "3-d numerical simulation of airflow around a cubic model by means of the k-ϵ model", J. Wind Eng. Ind. Aerod., 31(2), 283-303. https://doi.org/10.1016/0167-6105(88)90009-8.   DOI
93 Qin, X. and Gu, M. (2004), "Determination of flutter derivatives by stochastic subspace identification technique", Wind Struct., 7(3), 173-186. http://dx.doi.org/10.12989/was.2004.7.3.173.   DOI
94 Blocken, B. (2014), "50 years of computational wind engineering: past, present and future", J. Wind Eng. Ind. Aerod., 129 69-102. https://doi.org/10.1016/j.jweia.2014.03.008.   DOI
95 Bezabeh, M., Bitsuamlak, G. and Tesfamariam, S. (2020), "Performance-based wind design of tall buildings: concepts, frameworks, and opportunities", Wind Struct., 31(2), 103-142. https://doi.org/10.12989/was.2020.31.2.103.   DOI
96 Blessmann, J. (1985), "Buffeting effects on neighbouring tall buildings", J. Wind Eng. Ind. Aerod., 18(1), 105-110. https://doi.org/10.1016/0167-6105(85)90077-7.   DOI
97 Blevins, R.D. (1984), "Applied fluid dynamics handbook", New York.
98 Boggs, D. (2014), "The past, present and future of high-frequency balance testing", Wind Struct., 18(4), 323-345. http://dx.doi.org/10.12989/was.2014.18.4.323.   DOI
99 Kim, Y., You, K. and Ko, N. (2008), "Across-wind responses of an aeroelastic tapered tall building", J. Wind Eng. Ind. Aerod., 96(8-9), 1307-1319. https://doi.org/10.1016/j.jweia.2008.02.038.   DOI
100 Kim, Y. and You, K. (2002), "Dynamic responses of a tapered tall building to wind loads", J. Wind Eng. Ind. Aerod., 90(12-15), 1771-1782. https://doi.org/10.1016/S0167-6105(02)00286-6.   DOI
101 Kim, Y., You, K. and You, J. (2014), "Across and along-wind responses of tall building", J Cent South Univ., 21(11), 4404- 4408. https://doi.org/10.1007/s11771-014-2441-2.   DOI
102 Kim, Y.C. and Kanda, J. (2008), "Wind response characteristics for habitability of tall buildings in Japan", Structural Des. Tall Spec. Build., 17(3), 683-718. https://doi.org/10.1002/tal.373.   DOI
103 Isyumov, N., Fediw, A.A., Colaco, J. and Banavalkar, P.V. (1992), "Performance of a tall building under wind action", J. Wind Eng. Ind. Aerod., 42(1), 1053-1064. https://doi.org/10.1016/0167-6105(92)90112-N.   DOI
104 Reinhold, T.A., Tieleman, H.W. and Maher, F.J. (1977b), "Interaction of square prisms in two flow fields", J. Wind Eng. Ind. Aerod., 2(3), 223-241. https://doi.org/10.1016/0167-6105(77)90024-1.   DOI
105 Quan, Y., Chen, J. and Gu, M. (2020), "Aerodynamic interference effects of a proposed taller high-rise building on wind pressures on existing tall buildings", Struct. Des. Tall Spec. Build., 29(4), https://doi.org/10.1002/tal.1703.   DOI
106 Quan, Y., Gu, M. and Tamura, Y. (2005), "Experimental evaluation of aerodynamic damping of square super high-rise buildings", Wind Struct., 8(5), 309-324. http://dx.doi.org/10.12989/was.2005.8.5.309.   DOI
107 Reinhold, T.A. (1977), Measurement of Simultaneous Fluctuating Loads at Multiple Levels on a Model of a Tall Building in a Simulated Urban Boundary Layer, Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
108 Hui, Y., Tamura, Y. and Yoshida, A. (2012), "Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients", J. Wind Eng. Ind. Aerod., 104-106 98-108. https://doi.org/10.1016/j.jweia.2012.04.004.   DOI
109 Hui, Y., Tamura, Y., Yoshida, A. and Kikuchi, H. (2013a), "Pressure and flow field investigation of interference effects on external pressures between high-rise buildings", J Wind Eng Ind Aerod., 115, 150-161. https://doi.org/10.1016/j.jweia.2013.01.012.   DOI
110 Hui, Y., Yoshida, A. and Tamura, Y. (2013b), "Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients", J. Fluid Struct., 37, 120-133. https://doi.org/10.1016/j.jfluidstructs.2012.11.007.   DOI
111 Irwin, P., Kilpatrick, J. and Frisque, A. (2008). "Friend or foe wind at height", In CTBUH 8th World Congress, March.
112 Davenport, A.G. (1964). "The buffeting of large superficial structures by atmospheric turbulence", Annals New York Aca. Sci., 116(1), 135-160. https://doi.org/10.1111/j.1749-6632.1964.tb33943.x.   DOI
113 Boggs, D.W. and Peterka, J.A. (1989), "Aerodynamic model tests of tall buildings", J. Eng. Mech., 115(3), 618-635. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:3(618).   DOI
114 Vickery, P., Steckley, A., Isyumov, N. and Vickery, B. (1985), The Effect of Mode Shape on the Wind Induced Response of Tall Buildings.
115 von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proc Natl Acad Sci U S A., 34(11), 530-539.   DOI
116 Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div.., 93(3), 11-34. https://doi.org/10.1061/JSDEAG.0001692.   DOI
117 Davenport, A.G. (1992), "Progress in wind engineering: proceedings of the 8th international conference on wind engineering", J. Wind Eng. Ind. Aerod., 42(1-3), xv-xxxi.   DOI
118 Isyumov, N. (1978), "Studies of the pedestrian level wind environment at the boundary layer wind tunnel laboratory of the university of western ontario", J. Wind Eng. Ind. Aerod., 3(2-3), 187-200. https://doi.org/10.1016/0167-6105(78)90009-0.   DOI
119 Irwin, P.A. (2008a), "Bluff body aerodynamics in wind engineering", J. Wind Eng. Ind. Aerod., 96(6), 701-712. https://doi.org/10.1016/j.jweia.2007.06.008.   DOI
120 Irwin, P.A. (2009), "Wind engineering challenges of the new generation of super-tall buildings", J. Wind Eng. Ind. Aerod., 97(7-8), 328-334. https://doi.org/10.1016/j.jweia.2009.05.001.   DOI
121 Isyumov, N. and Davenport, A. (1975), The Ground Level Wind Environment in Built-Up Areas, Heathrow.
122 Isyumov, N. and Davenport, A. (1978), "Evaluation of the effects of tall buildings on pedestrian level wind environment", In ASCE Annual Convention. October.
123 Sakamoto, H., Hainu, H. and Obata, Y. (1987), "Fluctuating forces acting on two square prisms in a tandem arrangement", J Wind Eng Ind Aerod., 26(1), 85-103. https://doi.org/10.1016/0167-6105(88)90187-0.   DOI
124 Kim, Y.C. and Kanda, J. (2013), "Wind pressures on tapered and set-back tall buildings", J. Fluid Struct., 39, 306-321. https://doi.org/10.1016/j.jfluidstructs.2013.02.008.   DOI
125 Kareem, A. (1978), Wind Excited Motion of Buildings. Ph. D. Dissertation.
126 Kareem, A. (1987), "The effect of aerodynamic interference on the dynamic response of prismatic structures", J Wind Eng. Ind. Aerod., 25(3), 365-372. https://doi.org/10.1016/0167-6105(87)90028-6.   DOI
127 Relf, E. (1939), "Aerodynamic research at the national physical laboratory", J. Aeronaut. Sci., 6(4), 142-146. https://doi.org/10.2514/8.798.   DOI
128 Sakamoto, H. and Haniu, H. (1988), "Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer", J. Wind Eng. Ind. Aerod., 31(1), 41-66.   DOI
129 Sharma, A., Mittal, H. and Gairola, A. (2018), "Mitigation of wind load on tall buildings through aerodynamic modifications: review", J. Build. Eng., 18 180-194. https://doi.org/10.1016/j.jobe.2018.03.005.   DOI
130 Li, Q.S., Fu, J.Y., Xiao, Y.Q., Li, Z.N., Ni, Z.H., Xie, Z.N. and Gu, M. (2006), "Wind tunnel and full-scale study of wind effects on china's tallest building", Eng Struct., 28(12), 1745-1758. https://doi.org/10.1016/j.engstruct.2006.02.017.   DOI
131 Li, Y., Li, C., Li, Q., Song, Q., Huang, X. and Li, Y. (2020a), "Aerodynamic performance of caarc standard tall building model by various corner chamfers", J. Wind Eng. Ind. Aerod., 202 104197. https://doi.org/10.1016/j.jweia.2020.104197.   DOI
132 Kareem, A. and Zhou, Y. (2003), "Gust loading factor-past, present and future", J. Wind Eng. Ind. Aerod., 91(12), 1301-1328. https://doi.org/10.1016/j.jweia.2003.09.003.   DOI
133 Kareem, A., Cermak, J.E. and Peterka, J.A. (1980), "Crosswind response of high-rise buildings", Wind Eng., 2 659-672. https://doi.org/10.1016/B978-1-4832-8367-8.50065-6.   DOI
134 Kareem, A., Kijewski, T. and Tamura, Y. (1999), "Mitigation of motions of tall buildings with specific examples of recent applications", Wind Struct., 2(3), 201-251.   DOI
135 Kato, N., Niihori, Y., Kurita, T. and Ohkuma, T. (1997), "Full-scale measurement of wind-induced internal pressures in a highrise building", J. Wind Eng. Ind. Aerod., 69-71 619-630. https://doi.org/10.1016/S0167-6105(97)00192-X.   DOI
136 Simiu, E. (1973), "Logarithmic profiles and design wind speeds", J. Eng. Mech. Div., 99(5), 1073-1083. https://doi.org/10.1061/JMCEA3.0001808.   DOI
137 Tamura, T. and Miyagi, T. (1999), "The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 83(1-3), 135-145. https://doi.org/10.1016/S0167-6105(99)00067-7.   DOI
138 Tamura, T., Miyagi, T. and Kitagishi, T. (1998), "Numerical prediction of unsteady pressures on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 74-76 531-542. https://doi.org/10.1016/S0167-6105(98)00048-8.   DOI
139 Tamura, Y. (2013), Damping in Buildings and Estimation Techniques, Springer Japan
140 Simiu, E. (1986), "Wind effects on structures", An introduction to wind engineering.
141 Paterson, D.A. and Apelt, C.J. (1987), "Computation of wind flows over three-dimensional buildings", J. Wind Eng. Ind. Aerod., 24(3), 193-213. https://doi.org/10.1016/0167-6105(86)90022-X.   DOI
142 Baghaei Daemei, A., Eghbali, S.R., Moez, H. and Bahrami, P. (1970), "Wind tunnel flow simulation and aerodynamic shape optimization of tall buildings to improve the drag coefficient under wind forces", Hoviatshahr., 13(2), 63-80.
143 Paterson, D.A. and Apelt, C.J. (1989), "Simulation of wind flow around three-dimensional buildings", Build. Environ., 24(1), 39-50. https://doi.org/10.1016/0360-1323(89)90015-2.   DOI
144 Paterson, D.A. and Apelt, C.J. (1990), "Simulation of flow past a cube in a turbulent boundary layer", J. Wind Eng. Ind. Aerod., 35 149-176. https://doi.org/10.1016/0167-6105(90)90214-W.   DOI
145 Aquino, R.E.R. and Tamura, Y. (2013), "Framework for structural damping predictor models based on stick-slip mechanism for use in wind-resistant design of buildings", J Wind Eng Ind Aerod., 117 25-37. https://doi.org/10.1016/j.jweia.2013.04.001.   DOI
146 Asghari Mooneghi, M. and Kargarmoakhar, R. (2016), "Aerodynamic mitigation and shape optimization of buildings: review", J. Build. Eng., 6 225-235. https://doi.org/10.1016/j.jobe.2016.01.009.   DOI
147 Baetke, F., Werner, H. and Wengle, H. (1990), "Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners", J Wind Eng. Ind. Aerod., 35 129-147. https://doi.org/10.1016/0167-6105(90)90213-V.   DOI
148 Bailey, P.A. and Kwok, K.C.S. (1985), "Interference excitation of twin tall buildings", J Wind Eng Ind Aerod., 21(3), 323-338. https://doi.org/10.1016/0167-6105(85)90043-1.   DOI
149 Amin, J.A. and Ahuja, A. (2012), "Wind-induced mean interference effects between two closed spaced buildings", Ksce J. Civil Eng., 16(1), 119-131. https://doi.org/10.1007/s12205-012-1163-y.   DOI
150 Amin, J.A. and Ahuja, A.K. (2010), "Aerodynamic modifications to the shape of the buildings: a review of the state-of-the-art", Asian J. Civil Eng.., 11(4).
151 Cooper, K.R., Nakayama, M., Sasaki, Y., Fediw, A.A., Resende-Ide, S. and Zan, S.J. (1997), "Unsteady aerodynamic force measurements on a super-tall building with a tapered cross section", J. Wind Eng. Ind. Aerod., 72 199-212. https://doi.org/10.1016/S0167-6105(97)00258-4.   DOI
152 Solari, G. and Repetto, M.P. (2002), "General tendencies and classification of vertical structures under gust buffeting", J. Wind Eng. Ind. Aerod., 90(11), 1299-1319. https://doi.org/10.1016/S0167-6105(02)00259-3.   DOI
153 Kawai, H. (1992), "Vortex induced vibration of tall buildings", J. Wind Eng. Ind. Aerod., 41(1), 117-128. https://doi.org/10.1016/0167-6105(92)90399-U.   DOI
154 Pentek, M., Winterstein, A., Vogl, M., Kupas, P., Bletzinger, K. and Wuechner, R. (2018), "A multiply-partitioned methodology for fully-coupled computational wind-structure interaction simulation considering the inclusion of arbitrary added mass dampers", J. Wind Eng. Ind. Aerod., 177 117-135. https://doi.org/10.1016/j.jweia.2018.03.010.   DOI
155 Pope, R.A. (1994), "Structural deficiencies of natural draught cooling towers at uk power stations. Part 1: failures at ferrybridge and fiddlers ferry", Struct. Build., 104(1), 1-10. https://doi.org/10.1680/istbu.1994.25675.   DOI
156 Smagorinsky, J. (1963), "General circulation experiments with the primitive equations: i. The basic experiment", Mon Weather Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.   DOI
157 Solari, G. (1993), "Gust buffeting. Ii: dynamic alongwind response", J. Struct. Eng., 119(2), 383-398. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(383).   DOI
158 Stathopoulos, T. (1985), "Wind environmental conditions around tall buildings with chamfered corners", J. Wind Eng. Ind. Aerod., 21(1), 71-87. https://doi.org/10.1016/0167-6105(85)90034-0.   DOI
159 Kim, W., Yoshida, A., Tamura, Y. and Yi, J. (2018), "Experimental study of aerodynamic damping of a twisted supertall building", J. Wind Eng. Ind. Aerod., 176 1-12. https://doi.org/10.1016/j.jweia.2018.03.005.   DOI
160 Kawai, H. (1998), "Effect of corner modifications on aeroelastic instabilities of tall buildings", J. Wind Eng. Ind. Aerod., 74 719-729. https://doi.org/10.1016/S0167-6105(98)00065-8.   DOI
161 Kwok, K.C. and Bailey, P.A. (1987), "Aerodynamic devices for tall buildings and structures", J. Eng. Mech., 113(3), 349-365. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:3(349).   DOI
162 Kwok, K.C.S. (1982), "Cross-wind response of tall buildings", Eng. Struct., 4(4), 256-262. https://doi.org/10.1016/0141-0296(82)90031-1.   DOI
163 Kwok, K.C.S. (1988), "Effect of building shape on wind-induced response of tall building", J. Wind Eng. Ind. Aerod., 28(1-3), 381-390. https://doi.org/10.1016/0167-6105(88)90134-1.   DOI
164 Kwok, K.C. and Melbourne, W.H. (1981), "Wind-induced lock-in excitation of tall structures", J. Struct. Div., 107(1), 57-72. https://doi.org/10.1061/JSDEAG.0005637.   DOI
165 Lam, K.M. and Li, A. (2009), "Mode shape correction for windinduced dynamic responses of tall buildings using time-domain computation and wind tunnel tests", J. Sound Vib., 322(4-5), 740-755. https://doi.org/10.1016/j.jsv.2008.11.049.   DOI
166 Lawson, T.V. and Penwarden, A.D. (1977), "The effects of wind on people in the vicinity of buildings", http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=P ASCAL7780305984.
167 Lee, J.L. (1998), "The origin of the wind tunnel in Europe, 1871-1900", Air Power History., 45(2), 4.
168 Steckley A. (1989), "Motion-induced wind forces on chimneys and tall buildings".
169 Stathopoulos, T. and Storms, R. (1986), "Wind environmental conditions in passages between buildings", J. Wind Eng. Ind. Aerod., 24(1), 19-31. https://doi.org/10.1016/0167-6105(86)90070-X.   DOI