• Title/Summary/Keyword: Circulatory Flow

Search Result 104, Processing Time 0.024 seconds

Study on Improved Loss Model for Incompressible Regenerative Turbomachines (비압축성 재생형 기계의 손 실 모델 개선에 관한 연구)

  • Choi, Won-Chul;Yoo, Il-Su;Chung, Myung-Kyoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.341-344
    • /
    • 2008
  • The complicated helical flow formed in the regenerative turbomachines is usually decomposed into a peripheral component and a circulatory component. On the basis of the momentum exchange theory, the circulatory flow plays a critical role of imparting angular momentum to the peripheral flow. Therefore, the accuracy of performance prediction is dominated by the circulatory flow modeling. Until now the circulatory flow has been accounted of a standstill flow normal to the peripheral flow. However, the circulatory path from the impeller exit to the re-entrance inlet is exposed to the adverse pressure gradient, so it would be more realistic to describe that the circulatory flow is formed on the skewed plane not perpendicular to the peripheral flow. Present study suggests new circulatory flow loss model including the effect of adverse pressure gradient and modifies the effective circulatory flow rate and circulatory pivot which were previously published.

  • PDF

Comparison of normal and replantation digital blood flow using photo-plethysmography (Photo-Plethysmography를 이용한 정상과 재접합 수지 혈류량의 비교)

  • Nam, Ki-Chang;Kim, Sung-Woo;Rah, Dong-Kyun;Kim, Deok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.322-324
    • /
    • 2004
  • Up to the present, digital replantation patients has appealed different symptoms due to blood circulatory failure. But, the level of blood circulatory failure has been evaluated only by clinical symptoms, or angiography. According to the cases of digit replantation is increasing, then objective evaluation methods of the level of blood circulation failure is needed other than patient's subjective symptoms and complaints. Although angiography, doppler, electromagnetic flowmeter, laser blood flowmeter, mechanical blood flowmeter has been used for the evaluation of the blood circulatory failure, the result was affected by time, place, surrounding temperature, patient's body temperature, and even emotion. Therefore, it is pointed out with lack of availability, feasibility and reproducibility. Thus, we compared digital blood flow of dominant hand to non dominant hand, and replanted fingers to opposite normal fingers from developed photo-plethysmography. The average digital blood flow showed no difference in normal digits each other, but, replanted digits showed average of 53% (9 - 100 %) compare to opposit normal digits. As it measure relative blood flow for circulatory failure of tissue such as fingers and toes more sensitively, reliably. In conclusion, it is expected that photo- plethysmography will be very useful for diagnosis, curative effect, prognosis of blood circulatory failure in digital replantation patient.

  • PDF

Improved Momentum Exchange Theory for Incompressible Regenerative Turbomachines (I) - Hydraulic Model - (비압축성 재생형 기계에 대한 개선된 운동량 교환 이론 (I) - 수력학적 모델 -)

  • Park Mu Ryong;Chung Myung Kyoon;Yoo Il Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1238-1246
    • /
    • 2004
  • Momentum exchange theory has been generally used for an analysis of the regenerative turbomachines due to its direct description of the complicate circulatory flow. However, because its application is limited only to linear region and its model equations are incomplete on three variables, it needs further refinements. In the present study it is improved by introducing a central pivot of circulatory flow. Also, by assuming linear circulatory velocity distribution, mean radii of inlet and outlet flows through the impeller are newly suggested. By applying control volume analysis to both linear region and the acceleration region, the governing equation on the circulatory velocity is derived. As a result, systematic performance analysis on the entire region of the incompressible regenerative turbomachines can be carried out based on the proposed model equations.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

Time-Varying Hemodynamic Characteristics Simulation using Computerized Mock Circulatory Loop System with Servo Flow Regulator

  • Moon, Youngjin;Son, Kuk Hui;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.264-270
    • /
    • 2015
  • A mock circulatory loop system has been developed to construct a simulator for trainees in cardiopulmonary bypass systems or to simulate a test environment for cardiac-assist devices. This paper proposes a computerized mock circulatory loop system whose node is modularized by using a servo control flow regulator to simulate dynamic change of the hemodynamic status. To observe the effect of time-varying resistance, one with hemodynamic properties, the proposed system replicates the planned cross-sectional areas of the outlet of a ventricular assist device in terms of voltage input of a servo valve. The experiment is performed (1) for steady-input commands of selected area sizes and (2) for dynamic commands such as monotonous increase and decrease, and oscillatory functions of the voltage input, and a computer program based on LabVIEW (National Instruments, Austin, USA) processes every measured data and control command to the servo valve. The results show that the pressure and flow at the target points with respect to time-varying resistance match intuitive estimation: the pressure at the outlet and the pressure drop between both sides of the valve increased and the flow at the outlet decreased for increased resistance.

The Effects of Gamigunshimtang on the Ischemic Heart Disease & Heart cell in Rats (허혈성심장(虛血性心臟) 및 심장세포(心臟細胞)에 대(對)한 가미건심탕(加味健心湯)의 실험적(實驗的) 연구(硏究))

  • Park, Jung-Mi;Moon, Sang-Kwan;Go, Chang-Nam;Cho, Gi-Ho;Kim, Kyung-Suk;Bae, Hyung-Sup;Lee, Kyung-Sup
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.251-270
    • /
    • 1998
  • The effects of Gamigunshimtang on the isolated perfused ischemic heart in rats, heart rates, left ventricular pressure, cardiac blood flow and cardiotoxicity were stu.died in H9C2 myoblast cell, myocardial slice culture The results were as follows: 1. The administration of Gamigunshimtang to the rat recovered effectively heart rate, left ventricular pressure and flow rate from the experimental ischemia in perfused rat heart. The release of lactic dehydrogenase after the ischemia also decreased compared to the control group. 2. The administration of Gamigunshimtang to H9C2 myoblast culture enhanced the cell proliferation and protected against doxorubicin and allylamine induced release of the lactic dehydrogenase into the culture medium. It also protected effectively against doxorubicin and allylamine induced decrease of Ca ATPase activity and the increase of NADPH-cytochrome C reductase activity in the microsome. 3. The administration of Gamigunshimtang to the rat myocardial slice culture protected effectively against doxorubicin and allylamine induced decreases of protein synthesis and ATP content, and increases of cvtosolic enzyme, creatin kinase into the medium and lipid peroxidation.

  • PDF

Numerical Study on Fluid Flows and Stirring in a Circular Cylinder Subjected to Circulatory Oscillation (회전요동하는 원통내의 유동 및 교반특성을 위한 수치해석적 연구)

  • Kim, Hyeun Mihn;Suh, Yong Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.408-418
    • /
    • 1999
  • Incompressible flow inside a circular cylinder Including periodically oscillating free surface waves was studied primarily by using a numerical method. We developed a finite difference scheme based on the MAC method applicable to three-dimensional free-surface flows, and applied it to the present flow model to study tho flow characteristics as well as the fluid stirring. To verify the validity of our scheme, we performed a simple experiment for flow visualization. We found that the numerical results show a reasonable agreement with the observed flow patterns.

A HEART MODEL IN THE CIRCULATORY SYSTEM

  • Jung, E.;Kim, Y.;Lee, W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.266-268
    • /
    • 2011
  • We present a mathematical model of left heart governed by the partial differential equations. This heart is coupled with a lumped model of the whole circulatory system governed by the ordinary differential equations. The immersed boundary method is used to investigate the intracardiac blood flow and the cardiac valve motions of the normal circulation in humans. We investigate the intraventricular velocity field and the velocity curves over the mitral ring and across outflow tract. The pressure and flow are also measured in the left and right heart and the systemic and pulmonary arteries. The simulation results are comparable to the existing measurements.

  • PDF

PID control of left ventricular assist device (PID 제어기를 이용한 좌심실보조장치의 제어)

  • Jeong, Seong-Taek;Kim, Hun-Mo;Kim, Sang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.315-320
    • /
    • 1998
  • In this paper, we present the PID control method for the controlling flow rate of highly complicated nonlinear Left Ventricular Assist Device(LVAD) with pneumatically driven mock circulatory system. Beat Rate (BR), Systole-Diastole Rate (SDR) and flow rate are used as the main variables of the LVAD system. System modeling is completed using the neural network with input variables (BR, SDR, their derivatives, actual flow) and an output valiable(actual flow). Then, as the basis of this model, we perform the simulation of PID control to predict the performance and tendency of the system and control the flow rate of LVAD system using the PID controller. The ability and effectiveness of identifying and controlling a LVAD system using the proposed algorithm will be demonstrated through computer simulation and experiments.

  • PDF

Modeling Study on a Circulatory Hollow-Fiber Membrane Absorber for $CO_{2}$ Separation (이산화탄소 분리를 위한 순환식 중공사 막흡수기에 관한 모델링 연구)

  • Chun, Myung-Suk;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 1995
  • For several years lots of attempts have been made to establish the liquid membrane-based techniques for separations of gas mixtures especially containing carbon dioxide. A more effective system to separate $CO_{2}$ from flue gases, a circulatory hollow-fiber membrane absorber(HFMA) consisting of absorption and desorption modules with vacuum mode, has been considered in this study. Gas-liquid mass transfer has been modeled on a membrane module with non-wetted hollow-fibers in the laminar flow regime. The influence of an absorbent flow rate on the separation performance of the circulatory HFMA can be predicted quantitatively by obtaining the $CO_{2}$ concentration profile in a tube side. The system of $CO_{2}/N_{2}$ binary gas mixture has been studied using pure water as an(inert) absorbent. As the absorbent flow rate is increased, the permeation flux(i.e., defined as permeation rate/membrane contact area) also increases. The enhanced selectivity compared to the previous results, on the other hand, shows the decreasing behavior. It has been found obviously that the permeation flux depends on the variations of pressure in gas phase of desorption module. From an accurate comparison with the results of conventional flat sheet membrane module, the advantageous permeability of this circulatory HFMA can be clearly ascertained as expected. Our efforts to the theoretical model will provide the basic analysis on the circulatory HFMA technique for a better design and process.

  • PDF