• Title/Summary/Keyword: Circulation control

Search Result 628, Processing Time 0.027 seconds

Development of transcutaneous energy transmission system for implantable total artificial heart (인공심장용 무선에너지 전송 시스템의 개발)

  • 이우철;안재목;이상훈;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.762-767
    • /
    • 1991
  • To make electromechanical total artificial heart implantable inside the body, transcutaneous energy transmission system was designed and simulated by using PSPICE program. The fabricated system was evaluated by using Mock circulation system and showed comparable performance with the D.C power supply

  • PDF

The Circulation of Wastes (폐기물의 순환)

  • 강재원
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.3
    • /
    • pp.35-36
    • /
    • 2000
  • The waste management system has become social problem all over the world since it is too much to control the waste generated during the economic development. Therefore Human being should minimize the dispersion of useful materials on the earth which is limited by means of recycle and reuse, and should maximize the use of solar energy which is almost infinite.

  • PDF

An Orbit Robust Control Based on Linear Matrix Inequalities

  • Prieto, D.;Bona, B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.454-459
    • /
    • 2004
  • This paper considers the problem of satellite's orbit control and a solution based in Linear Matrix Inequalities (LMI) is proposed for the case of Low Earth Orbiters (LEO). In particular, the modelling procedure and the algorithm for control law synthesis are tested using as study case the European Gravity Field and Ocean Circulation Explorer satellite (GOCE), to be launched by the European Space Agency (ESA) in the year 2006. The scientific objective of this space mission is the recovering of the Earth gravity field with high accuracy (less than 10${\mu}m$/${\mu}m$) and spatial resolution (better than 100km). In order to meet these scientific requirements, the orbit control must guarantee stringent specifications in terms of environmental disturbances attenuation (atmospheric drag forces) even in presence of high levels of model uncertainty.

  • PDF

Development of a Microcontroller-based Brushless DC Motor Control System for an Total aAtificial Heart

  • Choi, Won-Woo;Park, Seong-Keun;Choi, Jae-Soon;Min, Byoung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.509-513
    • /
    • 1995
  • A microcontroller-based DC motor control system for a total artificial heart(TAH) was developed. Using a one-chip microcontroller, 87Cl96KB, the design of digital motor speed control system and servo control system is demonstrated. Functionally, the control system consists of a position control unit, a speed control unit, and a communication unit. The performance and the reliability of the developed control system were assessed through a series of mock circulation system experiments.

  • PDF

Development of Intravascular Micro Active Endoscope(II) -System Design, Fabrication and In-vitro Evaluation- (혈관 삽입용 초소형 작동형 내시경의 개발(II) - 시스템 설계, 제작 및 체외 성능 분석 -)

  • Chang, Jun-Keun;Chung, Seok;Lee, Yong-Ku
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.278-286
    • /
    • 1999
  • To predict the behavior of the intravascular micro active endoscope in the real human vascular system, a human mock circulation system was developed. The intravascular micro active endoscope which consists of micro active bending catheter and micro drug infusion catheter was driven in the velocity, Re number and temperature controlled flow. The three SMA (Shape Memory Alloy) zigzag type spring in the micro active bending catheter was heated by the electric current generated by PWM controller, and the shape memory effect made the actuator bend to any direction. The micro drug infusion catheter was driven through the inner hole of the micro active bending catheter. A mock circulation system is shaped from Ascending Arota to Femoral artery according to a human data (the data contains many vascular sizes and hydrographs of many control points). We developed a vascular model with glass and silicone tubes, and set the flow system with circulation parts, flow settling parts, and lots of valves. The heater and heat-controller was added to the How system to centre! the temperature of the How at 36.5$^{\circ}C$. The result showed that the developed intravascular micro active endoscope could be induced to any point in the vascular model.

Substrate-Perfusion Studies on Coronary Circulation and Myocardial Energy Metabolism in Spontaneously Hypertensive Rat Hearts (발현성 고혈압쥐의 관상순환 기능과 심장근의 에너지 대사에 관한 생체외 에너지원의 관류 연구)

  • 김은지
    • Journal of Nutrition and Health
    • /
    • v.28 no.2
    • /
    • pp.115-126
    • /
    • 1995
  • The effects of energy-yielding substrates on coronary circulation, myocardial oxygen metabolism, and intramyocytic adenylates of perfused Wistar control rat(WC) and spontaneously hypertensive rat(SHR) hearts were examined under basal and $\beta$-adrenergic stimulation conditions. The perfusion medium (1.0mM Ca2+) contained 5mM glucose (+5U/l insulin) in combination with 5mM pyruvate, 5mM lacate, 5mM acetate, or 5mM octanoate as energy substrates. Hearts were perfused with each substrate buffer for 20min under basal conditions. Coronary functinal hyperemia was induced by infusing for 20min isoproterenol (ISO, 1uM), a $\beta$-receptor agonist. Cardiac adenylates, glycolytic intermediates, and coronary venous lactate were measured by using an enzymatic analysis technique. Under basal conditions, acetate and octanoate significantly increased coronary flow(CF) of WC in parallel with myocardial oxygen consumption. However, CF of SHR was partly attenuated by coronary vasoconstriction despite metabolic acidosis. In addition, pyruvate and lactate depressd ISO-induced coronary functional hyperemia in SHR. It should be noted that octanoate exhibited coronary dysfunction under ISO conditions. On the other hand, fat substrates depleted myocardial high energy phosphate pool and accumulated breakdown intermediates. In SHR with coronary vasoconstriction under basal conditions, and with depressed coronary functional hyperemia, high energy phosphates were greatly depleted. These results suggest that energy substrates in the myocardium and coronary smooth muscle alter remarkably coronary circulation, and that coronary circulatory function is associated with a reserve of high energy phosphates and a balance between breakdown and nono synthesis of energy phosphates. These findings could be explained by alterations in the cytosolic redox state manipulated by LDH and hence in the cytosolic phosphorylation potential, which might be involved in hypertension of SHR.

  • PDF

Impact of Complex Hemodynamics to the Management of ArterioVenous(AV) Fistula (동정맥루의 복합성 혈류학 소견이 그 관리에 미치는 영향)

  • Lee Byung-Boons
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.9-10
    • /
    • 2002
  • Human circulatory system between heart and tissue is not directly connected in normal condition but mandatory to go through the capillary system in order to fulfill its physiologic aim to deliver oxygen and nutrients, etc. to the tissue and retrieve used blood together with waste products from the tissue properly. When abnormal connection between arterial and venous system (AV fistula), these two circulatory systems respond differently to the hemodynamic impact of this abnormal connection between high pressure (artery) and low pressure (vein) system. Depending upon the location and/or degree (e.g. size and flow) of fistulous condition, each circulatory system exerts different compensatory hemodynamic response to this newly developed abnormal inter-relationship between two systems in order to minimize its hemodynamic impact to own system of different hemodynamic characteristics. Pump action of the heart can assist the failing arterial system directly to maintain arterial circulation against newly established low peripheral resistance by the AV fistula during the compensation period, while it affects venous system in negative way with increased venous loading. However, the negative impact of increased heart action to the venous system is partly compensated by the lymphatic system which is the third circulatory system to assist venous system independently with different hemodynamics. The lymphatic system with own unique Iymphodynamics based on peristaltic circulation from low resistance to high resistance condition, also increases its circulation to assist the compensation of overloaded venous system. Once these compensation mechanisms should fail to fight to newly established hemodynamic condition due to this abnormal AV connection, each system start to show different physiologic ${\underline{de}compensation}$ including heart and lymphatic system. The vicious cycle of decompensation between arterial and vein, two circulatory system affecting each other by mutually negative way steadily progresses to show series of hemodynamic change throughout entire circulation system altogether including heart. Clinical outcome of AV fistula from the compensated status to decompensated status is closely affected by various biological and mechanical factors to make the hemodynmic status more complicated. Proper understanding of these crucial biomechanical factors iii particular on hemodyanmic point of view is mandatory for the advanced assessment of biomechanical impact of AV fistula, since this new advanced concept of AY fistula based on blomechanical information will be able to improve clinical control of the complicated AV fistula, either congenital or acquired.

  • PDF

Effects of High Dose Irradiation on The Leukocyte Life Span (고선양(高線量) 방사선(放射線)이 백혈구(白血球) 수명(壽命)에 미치는 영향(影響))

  • Koh, Joo-Hwan;Chong, In-Yong;Kim, Yong-Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.67-75
    • /
    • 1984
  • As a part of studies on acute effects of high dose irradiation the present report was carried out to evaluate the changes of the leukocyte life span in the Newzealand white male rabbits by a single whole body exposure to gamma rays from $^{60}Co$ teleirradiation unit. The exposure was done in dose levels of 100, 300, 550 and 1,000 rad to each experimental group of 10 rabbits. The life span and apparent half survival time of leukocytes, and the elution rate of leukocytes in the circulating blood were measured by McMillan method using $^{51}Cr$. 1. As a critical indicator of radiation hazards of the Newzealand male rabbits, the LD 50/30 and LD 100/30 after whole body exposure was estimated as 550 and 1,000 rads respectively. 2. The life span of leukocyte in the circulation after irradiation was slightly shortened in the 100 rad irradiated group, as compared with the unirradiated control group, but markedly shortened in the 300, 550 and 1,000 rads irradiated group. 3. After irradiation, decrease of leukocyte half survival time in the circulation showed the same pattern as that of leukocytes life span. 4. As the irradiation doses increased, the elution rate of $^{51}Cr$ loss from $^{51}Cr$ tagged leukocytes in the circulation were markedly increased gradually. 5. The life span shortening of leukocytes in the circulation after irradiation seems to occure by two processes of senescence acceleration and early destruction.

  • PDF

Changes of Blood pH in Micro-circulation System on the Stimulated Time of Pulsed Magnetic Fields (펄스자기장 자극 시간에 따른 미세순환시스템 내에서 혈액의 pH변화)

  • Lee, Boram;Choi, Yukyung;Lee, Hyunsook
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.214-218
    • /
    • 2022
  • The purpose of this study was to investigate the role of the PMF in the treatment of acidosis and inflammation by monitoring the pH change for the continuity of PMF effect on the blood in the micro-circulation system that mimics the capillaries in the human body. Micro-tubes and micro-channels similar in diameter to those of arteries and arterioles were fabricated using PDMS and connected to a micro-pump for blood circulation. The continuity of PMF effect was verified in a micro-circulation system in-vitro. The pH changes for the circulating blood and for persistence time of PMF stimulus effect were confirmed using the optimized PMF conditions based on the previous studies. Also pH changes were observed by continuously stimulating PMF for a set period of time. The result was observed that the pH of the blood acidified using tBHP continued to rise from immediately after stimulation of PMF to 70 minutes of stimulation, reaching a normal pH range, and then decreasing. Our study showed that PMF has a positive effect on the control of blood pH homeostasis, so it is suggested the possibility of being used as a noninvasive treatment for acidosis treatment and anti- inflammatory treatment.