• Title/Summary/Keyword: Circulating Water Channel(CWC)

Search Result 32, Processing Time 0.027 seconds

Design and Performance Analysis of a Small Circulating Water Channel for Ocean Engineering (해양공학용 소형 회류수조 설계 및 성능분석)

  • Yim, Young-Bae;Jeong, Uh-Cheul;Park, Chan-Won;Hong, Ki-Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.198-202
    • /
    • 2003
  • A small circulating water channel (CWC) for experiments ocean engineering is designed and made through the co-work of a company, MESTEC, and a college, Inha Technical Research Institute. General function of the elements of CWC are explained. The velocities in the test section are measured and analysed to estimate the performance of the CWC. The result of the velocity distribution is acceptable for experiments of ocean engineering.

  • PDF

Bubble Wake Measurement by Acoustic Bubble Spectrometer Generated by Planing Hull at Circulating Water Channel (회류수조에서의 ABS에 의한 활주선 후류 기포항적계측)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • This paper presents bubble wake measurement results generated by the planing hull. The bubble was generated by SNAME TMB model(No. 4876) with hard chine at the CWC(Circulating Water Channel). ABS(Acoustic Bubble Spectrometer) was used to measure bubble wake measurement. The manufactured model is one meter in length and uniform velocity to generate the bubble at CWC is 3m/s, relatively higher speed than conventional hull form. Measurements were performed successfully and measured results show well the general characteristics of bubble wake generated by planing hull. Furthermore, experimental equations are proposed for the practical use.

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai;Zhou, Zexing;Li, Hongwei;Zhou, Hao;Xu, Yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

Correlative Experimental Study Between The Results of Circulating Water Channel and Towing Tank Tests (회류수조와 예인수조 시험결과의 상호관계의 실험적 연구)

  • Lee, K.J.;Ra, Y.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.37-45
    • /
    • 2003
  • Model tests using 2.0m model of the series 60 form( $C_{b}$= 0.6) were carried out in the Circulating Water Channel (CWC) in the Chosun University (CU, Korea) for the purpose of a correlative study with Towing Tank (TT). Resistance, propeller open water, self propulsion and wake survey tests were carried out and the results were extrapolated to the ship scale. These results were compared with the extrapolated ship values based on the model test of 7.0m model in the TT at the Korea Research Institute of Ships and Ocean Engineering (KRISO, Korea). The CWC test results were correlated with the results of the towing tank tests.s.

Correlative Experimental Study Between The Results of Circulating Water Channel and Towing Tank Tests

  • Lee, Kwi-Joo;Kim, Kyoung-Hwa;Isaacs, Karl Antony
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.70-75
    • /
    • 2003
  • Model tests using 2.0m model of the series 60 form ($C_{b}$ = 0.6) were carried out in the Circulating Water Channel(CWC) in the Chosun University(CU, Korea) for the purpose of a correlative study with Towing Tank(TT). Resistance, propeller open water, self propulsion, and wake survey tests were carried out and the results were extrapolated to the ship scale. These results were compared with the extrapolated ship values based on the model test of 7.0m model in the TT at the Korea Research Institute of Ships and Ocean Engineering (KRISO, Korea). The CWC test results were correlated with the results of the towing tank tests.

  • PDF

Flow Survey around Two-Dimensional Circular Cylinder using PIV Technique (PIV를 사용한 2차원 원형 실린더 주위의 유동해석)

  • 박건선;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • Flaw visualization and velocity field measurement methods have practical applications in the various fluid engineering fields, such as mechanics, ships, and heat fluids. In this study, the basic principles and theoretical methods are used to establish an application technique of Particle Imae Velocimetry(abbreviated to PIV below). Accordingly, the measured results of velocity field distribution of a section inside the Circulating Water Channel (abbreviated to CWC below) are computed using the PIV is presented. The uniformity of velocity distribution of the section in CWC is confirmed, by comparing this PIV data with the existing current meter data. Also, in order to measure the flaw fields of surroundings of 2-dimensional cylinder in the CWC, the flaw visualization technique using the PIV is applied.

Measurement of Turbulent Wake behind a SUBOFF Model and Derivation of Experimental Equations (SUBOFF 모형 후방 난류항적 계측 및 실험식 유도)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.198-204
    • /
    • 2011
  • This paper presents the experimental result to investigate the characteristics of turbulent wake generated by submarine. A SUBOFF nude model which was assumed as an axial -symmetric body was used to create wake, and a thin strut was mounted on the top of the model. The experiments were conducted in a circulating water channel(CWC), and a hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the timeaveraged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, experimental equations are derived. These experimental equations show well the general characteristics of the turbulent wake behind the submerged body with simple configuration.

Measurement of Turbulent Wake behind a Self-Propelled SUBOFF Model and Derivation of Experimental Equations (자항하는 SUBOFF 모형 난류항적 계측 및 실험식 유도)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.364-371
    • /
    • 2011
  • This paper presents experimental results and derived experimental equations to investigate the turbulent wake characteristics generated by the self-propelled SUBOFF submarine model. A self-propelled SUBOFF model which was assumed as an axial-symmetric body was used to create wake, and a thin strut was mounted on the topside of the model. The experiments were conducted in a circulating water channel(CWC), and the hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the time-averaged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, this paper presents derived experimental equations, which is extended result to the reference [1]. These experimental equations show well the general characteristics of the turbulent wake behind the self-propelled submerged body.

Planar Motion Mechanism Test of the Mobile Harbor Running in Design Speed in Circulating Water Channel

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.525-532
    • /
    • 2010
  • Mobile Harbor (MH) is a new transportation platform that can load and unload containers onto and from very large container ships at sea. It could navigate near harbors where several vessels run, or it could navigate through very narrow channels. In the conceptual design phase when the candidate design changes frequently according to the various performance requirements, it is very expensive and time-consuming to carry out model tests using a large model in a large towing tank and a free-running model test in a large maneuvering basin. In this paper, a new Planar Motion Mechanism(PMM) test in a Circulating Water Channel (CWC) was conducted in order to determine the hydrodynamic coefficients of the MH. To do this, PMM devices including three-component load cells and inertia tare device were designed and manufactured, and various tests of the MH such as static drift test, pure sway test, pure yaw test, and drift-and-yaw combined test were carried out. Using those coefficients, course-keeping stability was analyzed. In addition, the PMM tests results carried out for the same KCS (KRISO container ship) were compared with our results in order to confirm the test validity.

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.