• Title/Summary/Keyword: Circular-tube

Search Result 555, Processing Time 0.025 seconds

A Study on the Heat Transfer of In-line Heat Exchanger (직렬 열교환기의 열전달에 관한 연구)

  • Choe, S.Y.;Kim, M.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.48-53
    • /
    • 2008
  • Heat exchangers are commonly used in practice in a wide range of application, from heating and air-conditioning system in a household, to chemical processing and power production in a large plant. Heat transfer in a heat exchanger usually involves convection in each fluid and conduction through the wall separating the two fluids. The heat transfer characteristics of tube banks of in-line arrangements of four circular cylinders in a cross flow are compared for a range of tube locations and Reynolds numbers. The in-line pitch ratio was set up in the range of $1.5\leq L/d\leq4.0$, where L is the center to center distance and d the circular cylinder diameter, and in the Reynolds number of $13,000\leq Re\leq50,000$. The local and mean Nusselt numbers were estimated, and then. Subsequently, the heat transfer characteristics of four circular cylinders were found to exhibit a strong dependency upon the cylinder spacing and separation point of their upstream cylinders.

  • PDF

An Experimental Study on Close-Contact Melting in Horizontal Capsules with Circular or Rectangular Cross Sections (원형 및 사각단면을 가지는 수평캡슐에서의 접촉용해에 관한 실험적 연구)

  • Kim, Si-Pom;Lee, Chi-Woo
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.39-48
    • /
    • 1993
  • This empirical paper addresses the phenomena of the contact melting of PCM in horizontal capsules of circular and rectangular cross sections with various aspect ratio. The melting-rate tends to increase as the Stefan number increases. The case of rectangular tube displays larger melting-rate than that of circular tube, and the melting-rate increases as the aspect ratio decreasws for rectangular tubes. In case of circular tube, the effect of natural convection on the melting-rate is 6.1%, 8.6% and 11.2% according to Stefan number 0.0772, 0.1287 and 0.1802 respectively.

  • PDF

The combined reinforcement to recycled aggregate concrete by circular steel tube and basalt fiber

  • Zhang, Xianggang;Zhang, Songpeng;Chen, Xu;Gao, Xiang;Zhou, Chunheng
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.323-334
    • /
    • 2022
  • In order to study the axial compression performance of basalt-fiber reinforced recycled concrete (BFRRC) filled circular steel tubular short columns, the axial compression performance tests of seven short column specimens were conducted to observe the mechanical whole-process and failure mode of the specimens, the load-displacement curves and the load-strain curves of the specimens were obtained, the influence of design parameters on the axial compression performance of BFRRC filled circular steel tubular short columns was analyzed, and a practical mathematical model of stiffness degradation and a feasible stress-strain curve equation for the whole process were suggested. The results show that under the axial compression, the steel tube buckled and the core BFRRC was crushed. The load-axial deformation curves of all specimens show a longer deformation flow amplitude. Compared with the recycled coarse aggregate (RCA) replacement ratio and the basalt fiber dosage, the BFRRC strength has a great influence on the peak bearing capacity of the specimen. The RCA replacement ratio and the BFRRC strength are detrimental to ductility, whereas the basalt fiber dosage is beneficial to ductility.

Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns

  • Le, An H.;Ekkehard, Fehling;Thai, Duc-Kien;Nguyen, Chau V.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • The research on the confinement behavior of ultra high performance concrete without and with the use of steel fibers (UHPC and UHPFRC) has been extremely limited. In previous studies, authors experimentally investigated the axially compressive behavior of circular steel tube confined concrete (STCC) short and intermediate columns with the employment of UHPC and UHPFRC. Under loading on only the concrete core, the confinement effect induced by the steel tube was shown to significantly enhance the utimate stress and its corresponding strain of the concrete core. Therefore, this paper develops a simplified stress - strain model for circular STCC columns using UHPC and UHPFRC with compressive strength ranging between 150 MPa and 200 MPa. Based on the regression analysis of previous test results, formulae for predicting peak confined stress and its corresponding strain are proposed. These proposed formulae are subsequently compared against some previous empirical formulae available in the literature to assess their accuracy. Finally, the simplified stress - strain model is verified by comparison with the test results.

Behavior of Circular Hollow Section R.C Member with Internal Corrugated Steel Tube (파형강관을 삽입한 중공원형단면 철근콘크리트 부재의 거동에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-Chil;Jo, Jae-Byung;Lee, Soo-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.1 s.8
    • /
    • pp.123-131
    • /
    • 2003
  • An experiment was carried out to investigate the mechanical behaviour of the circular hollow section reinforced concrete member with internal corrugated steel tube. A specimen, 50cm in diameter and 340cm in length, was made and tested by 3 points bending. The test load was increased slowly (quasi static) to the failure or unacceptable deformation. During the test, lateral displacement at mid point and longitudinal displacement of extreme fiber on compressive and tensile side of the specimen were measured. The measured data were analysed and compared with calculated results for the equivalent member without inserted corrugated steel tube. The comparison shows that the flexural strength and ductility of hollow section reinforced concrete members can be improved by inserting corrugated steel tubes inside.

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou;Zongping, Chen;Maogen, Ban;Yunsheng, Pang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.575-590
    • /
    • 2022
  • In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

Analytical Study on the Heat Transfer Characteristics of a Spirally Coiled Circular Fin-Tube Evaporator Operated Under Non-Frosting Conditions (무착상 조건에서 나선형 원형핀-튜브 증발기의 열전달 성능에 관한 해석적 연구)

  • Lee, Moo-Yeon;Kang, Tae-Hyung;Kim, Yong-Chan;Park, Jae-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.105-112
    • /
    • 2011
  • The objective of this study is to predict the heat-transfer performance of a spirally coiled circular fin-tube evaporator in which either R134a or R600a was used; this heat-transfer performance was predicted by varying the mass flow rate, inlet air temperature, air flow rate, and tube thickness. Mean deviation for the analytical model from the measured data was ${\pm}8.3%$. Simulation results revealed that at a given mass flow rate, the heat-transfer rate of the evaporator using R600a was higher than that usingR134a because the enthalpy of the former is higher than that of the latter at the given conditions. The heat-transfer rate of both refrigerants increased with an increase in the air flow rate and inlet air temperature but decreased with an increase in the tube thickness.

Hot Metal Extru-Bending Process for Curved Aluminum Tube Products with Circular or Rectangular Sections (원형 또는 사각 단면을 가지는 알루미늄 곡관 튜브제품의 열간금속압출굽힘가공)

  • Park D. Y;Jin I. T
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.663-670
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container. The difference of velocity at the die exit can be controlled by the two variables, the one of them is the different velocity of extrusion punch through the multi-hole container, the other is the difference of hole diameter of muliti-hole container. In this paper the difference of hole diameter is applied. So it can bend during extruding products because of the different amount of two billets when billets would be bonded in the porthole dies cavity. And the bending curvature can be controlled by the size of holes. The experiments with aluminum material for the curved tube product had been done for circular or rectangular curved tube section. The results of the experiments show that the curved tube product can be formed by the extru-bending process without the defects such as distortion of section and thickness change of wall of tube and folding and wrinkling. The curvature of product can be controlled by shape of cross section and the difference of billet diameters. And it is known that the bonding and extruding and bending process can be done simultaneously in the die cavity by the experiments that rectangular hollow curved tubes could be extruded by porthole dies with four different size billets made of aluminum material. And it shows that bending phenomenon can happen during extruding with for different billets from the analysis by DEFORM-3D.

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE (U-자형 곡관내의 유동특성에 대한 수치해석적 연구)

  • Koh, D.H.;Kang, D.J.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.97-103
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

  • PDF