• Title/Summary/Keyword: Circular-tube

Search Result 557, Processing Time 0.023 seconds

Flow and Heat Transfer Characteristics of Heat Exchanger Tube Bank with the Sinusoidal Inlet Velocity (정현파 입구 속도 변동에 따른 열교환기 관군의 유동 및 열전달 특성)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2021
  • The change of the vorticity and the temperature distribution in heat exchanger tube bank were analyzed for the flows with the constant inlet velocity and the sinusoidal inlet velocity. The flow frequency characteristics were examined by analyzing power spectral density of lift and drag at a typical circular tube in the tube bank. Karman vortex street could be seen at the upstream region of tube bank for the case of constant inlet velocity. It could be seen that the Karman vortex street was affected by the change of inlet velocity near the circular tubes for the case with the sinusoidal inlet velocity. It was observed that the unsteady temperature distributions for both inlet velocity conditions had almost the same motion as the flow vorticity behavior. The flow frequency for the case with the constant inlet velocity is 37.25Hz, and that with the sinusoidal inlet velocity, the flow frequency is 18.63Hz, which is equal to the sinusoidal inlet velocity. The mean surface Nusselt number(Nu) for overall heat exchanger tube bank was 1051 for the case with the constant inlet velocity and 1117 for the case with the sinusoidal inlet velocity. From the result of heat transfer analysis, it could be seen that Nu with the sinusoidal inlet velocity showed 6.3% increase than that with the constant inlet velocity.

An Experimental Study on Swirl Fluctuation Velocity in a Horizontal Circular Tube (수평원통관에서 선회유동의 난동속도에 관한 실험적 연구)

  • Chang Tae-Hyun;Kim Hee-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.29-37
    • /
    • 2003
  • During the past five decades or so, the characteristics of turbulent swirling flow have been studied extensively because of its great technological and scientific importance. It is well known that the swirling flow improves heat transfer in duct flow. The reason for this is due to the effect of streamline curvature associated with the tangential velocity component. Although many studies have been carried out to investigate the characteristics of the swirling flow in a circular tube. The experimental methods for measuring the velocity components are by hot-wire or LDV (Laser-Doppler-Velocimetry) measuring single point velocity so far. The present study was aimed to analyse the flow characteristics of swirling flow such as time-mean velocity vector, local velocity turbulence intensity and turbulence kinetic energy by using PIV(Particle-Image Velocimetry). The experiment was carried out for four Reynold numbers $1.0\times10^{4}$, $1.5\times10^{4}$, $2.0\times10^{4}$ and $2.5\times10^{4}$ of the measuring area.

  • PDF

Structural behavior of slender circular steel-concrete composite columns under various means of load application

  • Johansson, Mathias;Gylltoft, Kent
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.393-410
    • /
    • 2001
  • In an experimental and analytical study on the structural behavior of slender circular steel-concrete composite columns, eleven specimens were tested to investigate the effects of three ways to apply a load to a column. The load was applied eccentrically to the concrete section, to the steel section or to the entire section. Three-dimensional nonlinear finite element models were established and verified with the experimental results. The analytical models were also used to study how the behavior of the column was influenced by the bond strength between the steel tube and the concrete core and the by confinement of the concrete core offered by the steel tube. The results obtained from the tests and the finite element analyses showed that the behavior of the column was greatly influenced by the method used to apply a load to the column section. When relying on just the natural bond, full composite action was achieved only when the load was applied to the entire section of the column. Furthermore, because of the slenderness effects the columns did not exhibit the beneficial effects of composite behavior in terms of increased concrete strength due to the confinement.

Buckling resistance of axially loaded square concrete-filled double steel tubular columns

  • Ci, Junchang;Ahmed, Mizan;Tran, Viet-Linh;Jia, Hong;Chen, Shicai;Nguyen, Tan N.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.689-706
    • /
    • 2022
  • Thin-walled square concrete-filled double steel tubular (CFDST) columns composed of the inner circular tube filled with concrete can be used to carry the large axial loads or strengthen existing CFST columns in composite constructions. This paper reports an experimental program carried out on short square CFDST columns loaded concentrically. The influences of important column parameters on the post-buckling performance of such columns are investigated. Test results exhibit that the inner circular tube significantly improves the ultimate loads and the ductility of such columns compared to conventional concrete-filled steel tubular (CFST) and double-skin CFST (DCFST) columns with an inner void. A mathematical model developed is used to simulate the ultimate strengths and load-strain curves of such columns loaded axially. Furthermore, the ultimate strengths of such columns are predicted using existing codified design models for conventional CFST columns as well as the formulas proposed by previous researchers and compared against a large database comprising 500 CFDST columns. Lastly, an accurate artificial neural network model is developed for the practical applications of such columns under axial loading.

Experimental Study on Performance Evaluation of Steel Frame with Buckling Control Brace (좌굴제어 가새를 가진 가새골조의 성능향상에 관한 실험적 연구)

  • Lee, Sang-Ju;Han, Sang-Eul;Noh, Sam-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.181-188
    • /
    • 2007
  • This research presents two methods to prevent local buckling from circular tube brace and then verify their performance capacity through a cyclic loading test. As control methods on local buckling, one is to restrict local buckling as attaching cover plate at range of buckling. And the another is to exclude danger of buckling as inserting contraction device with rod and spring at the center of brace. The purpose of this research is to develop structural device for restriction of local buckling or for exclusion of its. And we investigate appliance of suggested methods through an experiment. We also estimate the improvement of performance capacity in a quantitative respect.

Heat Transfer Characteristics of CO2 at Supercritical Pressure in a Vertical Circular Tube (수직원형관에서 초임계압 CO2의 열전달 특성)

  • Yoo, Tae-Ho;Bae, Yoon-Yong;Kim, Hwan-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • At supercritical pressure, the physical properties of fluid change substantially and the heat transfer at a temperature similar to the critical or pseudo-critical temperature improves considerably; however, the heat transfer may deteriorate due to a sudden increase in the wall temperature at a certain condition of a mass and heat flux. In this study, the heat transfer rates in $CO_2$ flowing vertically upward and downward in a circular tube with a diameter of 4.57 mm under various conditions were calculated by measuring the temperature of the outer wall of the tube. The published heat transfer correlations were analyzed by comparing their prediction values with 7,250 experimental data. By introducing a buoyancy parameter, a heat transfer correlation, which could be applied only to a normal heat transfer regime, was extended such that it can be applied to regime of heat transfer deterioration. The published criteria for heat transfer deterioration were evaluated against the conditions obtained from the experiment in this study.

Ductility Evaluation of Circular Hollow Reinforced Concrete Columns with Internal Steel Tube (강관 보강 중공 R.C 기둥의 연성 평가 해석)

  • Han, Seung Ryong;Lim, Nam Hyoung;Kang, Young Jong;Lee, Gyu Sei
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In locations where the cost of concrete is relatively high or in situations where the weight of concrete members has to be kept to a minimum, it may be more economical to use hollow reinforced concrete vertic al members. Hollow reinforced concrete colun-ms with a low axial load, a moderate longitudinal steel percentage and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. Hollow reinforced concrete columns with a high axial load, a high longitudinal steel percentage, and a thin wall were found, however, to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner through the disintegration of the concrete in the compression zone. A design recommendation and example through the moment-curvature analysis program for curvature ductility are herein presented. A theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted, providing that the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed foi members with circular sections.

Performance Test of a Fan Coil with an Oval-Type Heat Exchanger (타원관 열교환기를 적용한 팬코일 성능 시험)

  • Yoon, Jeadong;Lee, Seunghyun;Sung, Jeayong;Lee, Myeong Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.67-71
    • /
    • 2014
  • In this study, a fan coil unit with an oval-type heat exchanger has been developed. The performance of the present fan coil unit has been investigated, by comparison with the previous fan coil unit with a circular-type heat exchanger. For the fan coil unit with circular- and oval-type heat exchangers, the heat flux and pressure loss through the heat exchangers were measured at standard operating conditions. In addition, the wind speeds exhausted from the fan coil units were compared, for the same fan motor operation. The experimental results show that the average wind speed of the oval-type heat exchanger is 20 percent higher than that of the circular-type heat exchanger. The heat flux in the oval-type heat exchanger is enhanced by 40% or more, over the circular-type heat exchanger.

Flow Characteristics of Neutrally Buoyant Particles in 2-Dimensional Poiseuille Flow through Circular Capillaries

  • Kim, Young-Won;Jin, Song-Wan;Yoo, Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.7-10
    • /
    • 2006
  • An experimental study has been conducted to quantitatively characterize the motion of neutrally buoyant particles in 2-dimensional Poiseuille flow through the micron-sized circular capillaries in the range of Re (Reynolds number) $\approx0.1\sim100$. $A{\mu}-PTV$ (Particle Tracking Velocimetry) system is adopted, which consists of a double-headed Nd:YAG laser, an epi-fluorescence microscope and a cooled CCD camera. Since high shear rate can be induced due to the scale effect even at low Re, it is shown that in micro scale neutrally buoyant particles in Poiseuille flow drift away from the wall and away from the center of the capillary. Consequently, particles accumulate at the equilibrium position of $0.52\sim0.64R$ with R being the radius of the capillary, which is analogous to that of tube flow in macro scale. There is a plateau in equilibrium position at small Re, while equilibrium position starts increasing at $Re\approx30$. The outermost edge of particle cluster is closer to the center of the capillary than that in previous studies due to low Re effect. The present study quantitatively presents characteristics of particle motion in circular capillaries. Furthermore, it is expected to give optimum factors for designing microfluidic systems that are to be used fur plasma separation from the blood.

  • PDF

Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP

  • Ou, Jialing;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • The compressive strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. According to previous experimental results, the failure process and mechanism of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs is analyzed, and the loading process is divided into 3 stages, i.e., elastic stage, elasto-plastic stage and failure stage. Based on continuum mechanics, the theoretical model of C-CFRP-CFST stubs under axial compression is established based on the assumptions that steel tube and concrete are both in three-dimensional stress state and CFRP is in uniaxial tensile stress state. Equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs are deduced. Theoretical predictions from the presented equations are compared with existing experimental results. There are a total of 49 tested specimens, including 15 ones for comparison of yield strength and 44 ones for comparison of ultimate strength. It is found that the predicted results of most specimens are within an error limit of 10%. Finally, simplified equations for calculating both yield strength and ultimate strength of C-CFRP-CFST stubs are proposed.