• 제목/요약/키워드: Circular-tube

검색결과 557건 처리시간 0.033초

탄소섬유쉬트로 보강된 원형CFT기둥의 압축거동과 ACI 440 code를 응용한 압축내력예측식 제안 (Axial Loading Behaviors and ACI 440 Code Applied Ultimate Axial Strength Formula of CFRP Strengthened Circular CFT Columns)

  • 박재우;홍영균;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제2권1호
    • /
    • pp.23-29
    • /
    • 2011
  • 본 연구에서는 CFRP쉬트로 보강된 원형 CFT기둥의 압축거동을 관찰하고 설계식을 제안하였다. 원형 CFT기둥의 CFRP쉬트의 보강효과를 관찰하기 위해 10개의 실험체를 제작하여 중심축하중 실험을 수행하였다. 실험변수로는 CFRP쉬트 보강겹수와 직경-두께비(D/t)이다. 실험결과 원형CFT기둥에 CFRP쉬트 보강을 통해 압축내력을 증가시킨 것으로 나타났다. 끝으로 ACI 440code를 응용하여 CFRP 보강된 원형 CFT기둥의 압축내력을 예측하기 위한 설계식을 제안한다. 제안식을 분석한 결과 실험결과와 비교적 일치한 것으로 나타났다.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Experimental behaviour of circular concrete filled steel tube columns under lateral cyclic loading

  • Cao, Vui Van;Vo, Cuong Trung;Nguyen, Phuoc Trong;Ashraf, Mahmud
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.445-460
    • /
    • 2021
  • This study experimentally explored the behaviour of 12 concrete filled steel tube (CFST) and steel tube columns subjected to lateral cyclic loading. The L/D ratio was 12.3 while D/t ratios were 45.4, 37.8 and 32.4, classifying these 12 specimens into 3 groups. Each group included 3 CFST and 1 steel tube columns and were tested to failure. The experimental results indicated that CFST specimens reached the state of 'collapse prevention' (drift 4%) prior to the occurrence of local buckling. Strength degradation of CFST specimens did not occur up to the failure by buckling. This showed the favourable characteristic of CFST columns in preventing collapse of structures subjected to earthquakes. The high energy absorption capability in the post collapse limit state was appropriate for dissipating energy in structures. Compared to steel tube columns, CFST columns delayed local buckling and prevented inward buckling. Consequently, CFST columns exhibited their outstanding seismic performance in terms of the increased ultimate resistance, capacity to sustain 2-3 additional load cycles and significantly higher drift. A simple and reasonably accurate model was proposed to predict the ultimate strength of CFST columns under lateral cyclic loading.

적층구성 변화에 따른 경량화 구조부재의 에너지 흡수 특성 (A Study on Energy Absorption Characteristics of Lightweight Structural Member according to Stacking Conditions)

  • 최주호;양인영
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.241-245
    • /
    • 2012
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP (Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated.

실험 및 데이터 분석에 의한 CFCT 단주 특성 (Characteristics of Concrete Filled Circular Tubular Stub Columns based on Experiment and Data Analysis)

  • 강현식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.161-168
    • /
    • 2001
  • The use of composite members to improve the compressive strength of steel structure is a common practice these days and its efficiency has already been proved by several researches and experiments. The result of concrete filled circular tubular(CFCT) stub column tests is introduced in this paper. The main parameter of this test is the ratio of diameter to thickness of circular hollow section. From the test results, the effect of concrete filled in steel tube on the ultimate strength, the deformation capacity and initial stiffness are discussed. The purpose of this paper is to investigate the effect of various parameters and evaluate the compressive strength of confined concrete. It would contribute to a better understanding of CFT structure, further laboratory experimentations are needed for better accurate estimation on its effect.

  • PDF

지진발생시 FRP 보강이 횡방향 구속에 미치는 효과 (Circumferential Confinement Effect of Circular Bridge Pier with FRP Wrapping in Earthquake)

  • 최영민;황윤국;권태규;윤순종
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.280-287
    • /
    • 2003
  • The bridge columns with lap-splice reinforcements in earthquake suffered a brittle bond-slip failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP wrapping. The retrofitted columns using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the circumferential confinement effect of existing circular bridge pier strengthened with FRP wrapping for poor lap-splice details. The effects on the confinement of FRP wrapping, such as gap lengths between footing and FRP, fiber orientations, and thicknesses of FRP, were investigated by Quasi-static experiments.

  • PDF

균일 유동장내 튜브배열의 유동관련 진동에 관한 연구( II ) 직렬로 배열된 두 원주의 유동여기 진동에 관하여 (A Study on the Flow=Induced Vibration of Tube Array in Uniform Crossflow(II) On the Flow-Induced Vibration of Two Interfering Circular Cylinders in Tandem)

  • 이기백;김봉환;양장식
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1518-1528
    • /
    • 1993
  • 본 연구는 단일 원주의 와여기 진동특성에 관한 연구의 연속연구로서 풍동내 에 직렬로 배열된 두 원주의 직교유동에 의한 두 가지 경우의 동적 거동을 조사하였다. 첫째는 상류측 탄성지지 원주의 후류내에 가깝게 놓여진 하류측 고정원주의 간섭에 의한 상류측 원주의 진동(proximity-induced vibration)이며, 둘째는 상류측의 고정원 주의 후류내에 가깝게 놓여진 하류측 탄성지지 원주의 공기역학적 진동(wake-induced vibration)이다. 본 연구의 목적으로 직렬로 배열된 동일 직경의 두 원주에 있어서 어느 한 쪽의 원주가 탄성지지가 되어 있을 경우, 두 원주사이의 간격과 유속변화에 따른 와여기 진동과 유력탄성 불안정 진동의 진동특성 및 후류내에서의 와유출 특성을 명확히 하기 위해 실험적으로 조사, 연구하였다.