• 제목/요약/키워드: Circular specimen

검색결과 165건 처리시간 0.027초

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

FRP Confinement of Heat-Damaged Circular RC Columns

  • Al-Nimry, Hanan Suliman;Ghanem, Aseel Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.115-133
    • /
    • 2017
  • To investigate the effectiveness of using fiber reinforced polymer (FRP) sheets in confining heat-damaged columns, 15 circular RC column specimens were tested under axial compression. The effects of heating duration, stiffness and thickness of the FRP wrapping sheets were examined. Two specimen groups, six each, were subjected to elevated temperatures of $500^{\circ}C$ for 2 and 3 h, respectively. Eight of the heat-damaged specimens were wrapped with unidirectional carbon and glass FRP sheets. Test results confirmed that elevated temperatures adversely affect the axial load resistance and stiffness of the columns while increasing their ductility and toughness. Full wrapping with FRP sheets increased the axial load capacity and toughness of the damaged columns. A single layer of the carbon sheets managed to restore the original axial resistance of the columns heated for 2 h yet, two layers were needed to restore the axial resistance of columns heated for 3 h. Glass FRP sheets were found to be less effective; using two layers of glass sheets managed to restore the axial load carrying capacity of columns heated for 2 h only. Confining the heat-damaged columns with FRP circumferential wraps failed in recovering the original axial stiffness of the columns. Test results confirmed that FRP-confining models adopted by international design guidelines should address the increased confinement efficiency in heat-damaged circular RC columns.

비부착식 단일 강연선용 원형 정착구의 일방향 슬래브 적용에 관한 실험적 연구 (An Experimental Study on the Performance of One-Way Slab Using Unbonded Post-Tensioned Anchorage for Single Tendon)

  • 김민숙;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제19권1호
    • /
    • pp.45-51
    • /
    • 2019
  • In this study, the static load test and the load transfer test were carried out to evaluate the structural performance of the circular anchorage proposed by the previous study. Specimens were fabricated according to KCI-PS101 and ETAG 013. As a result of the static load test, it was verified that the displacement of the wedge and the strand was kept constant when the tensile force of 80% of the nominal strength of the strand was applied. In the load transfer test, it was confirmed that all the specimens satisfied the stabilization formula of KCI-PS101 and ETAG 013. Post-tensioned one-way slab with circular anchorage were fabricated to evaluate the flexural behavior. All specimens exhibited the same flexural behavior and maximum load. However, the specimen with circular anchorage were advantageous than the rectangular anchorage one in terms of crack control of the anchorage zone.

Finite element application of an incremental endochronic model to flexible pavement materials

  • Kerh, Tienfuan;Huang, C.Y.
    • Structural Engineering and Mechanics
    • /
    • 제6권7호
    • /
    • pp.817-826
    • /
    • 1998
  • A finite element model based on the incremental endochronic theory for flexible pavement materials was developed in this study. Three grid systems with eight-node cubic isoparametric elements, and different loading steps were used to perform the calculations for a specimen of circular cylinder. The uniaxial stress experimental results on an asphalt mixture at $60^{\circ}C$ in SHRP conducted by University of California at Berkeley were used to check the ability of the derived numerical model. Then, the numerical results showed isotropic response and deviatoric response on the specimen in a three dimensional manner, which provided a better understanding for a deformed flexible material under the specified loading conditions.

Impact of temperature cycling on fracture resistance of asphalt concretes

  • Pirmohammad, Sadjad;Kiani, Ahad
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.541-551
    • /
    • 2016
  • Asphalt pavements are exposed to complex weather conditions and vehicle traffic loads leading to crack initiation and crack propagation in asphalt pavements. This paper presents the impact of weather conditions on fracture toughness of an asphalt concrete, prevalently employed in Ardabil road networks, under tensile (mode I) and shear (mode II) loading. An improved semi-circular bend (SCB) specimen was employed to carry out the fracture experiments. These experiments were performed in two different weather conditions namely fixed and cyclic temperatures. The results showed that consideration of the impact of temperature cycling resulted in decreasing the fracture toughness of asphalt concrete significantly. Furthermore, the fracture toughness was highly affected by loading mode for the both fixed and cyclic temperature conditions studied in this paper. In addition, it was found that the MTS criterion correctly predicts the onset of fracture initiation although this prediction was slightly conservative.

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • 제16권2호
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.

광탄성 위상이동법에 의한 사각형 구멍주위의 응력해석 (Stress Measurement of a Squarely Perforated Plate by Photoelastic Phase Shifting Method)

  • 이춘태;박태근;정걸;헨리 팡가니반;정태진;백태현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.49-50
    • /
    • 2006
  • Photoelasticity is widely and conveniently used methods for whole field stress analysis. In this paper, 8-step photoelastic phase shifting method was performed by using a multi-purpose polariscope to measure the fringe orders along a specified line on the specimen containing a square hole. The material of the specimen is made of Polycarbonate. The measurement results by 8-step phase shifting method were compared with the those calculated by ABAQUS.

  • PDF

저탄소강의 표면결개 방의 영향에 의한 피로강도의 정량적 평가 (Quantitative Evaluation of Fatigue Strength using a Surface defective Low Carbon Steel)

  • 윤명진
    • 한국생산제조학회지
    • /
    • 제4권4호
    • /
    • pp.42-49
    • /
    • 1995
  • It is not clearly known how defects or inclusions of a low carbon steel affect a fatigue strength. We study this issue using SM15C materials. The investigation is carried out by a quantitative evaluation, and experimental findings are: (1) a fatigue limit of A series smooth specimen is 205MPa, and that of B, C, D series is 245MPa, 304MPa and 245MPa, respectively. (2) the fatigue limit varies with respects to the stress distribution I the vicinity of a defects and crack. (3) the micro hole creates a half-circular shape crack, while the hole depth is not critical to the fatigue strength, (4) considering the fatigue strength, the hole diameter is more significant than the hole depth, and (5) Fatigue limit of artificially defected specimen is lower than that of a flawless one (5-10%), however, there exist allowance size and depth of defect which don't get to influence at fatigue limit.

  • PDF

순수 등방성 휨인장강도 시험법 개발 (Development of a Three Dimensional Modulus of Rupture Test)

  • 지광습;오홍섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2007
  • The classical two dimensional modulus of rupture test was generalized to three dimensions. Using this new method, the biaxial tensile strength can be measured with only one actuator. A circular plate is used in this method unlike a prismatic beam in the classical modulus of rupture test. The stress field in this specimen is isotropic and uniform in a plane paralle1 to the bottom surface of the specimen. The relation between the applied load and the maximum stress is derived analytical1y using Timoshenko's solution. A set of experimental data is presented.

  • PDF

특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측 (Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length)

  • 박승범;변준형;안국찬
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.